Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2019, 1(3): 330-340 Published Date:2019-6-20

DOI: 10.3724/SP.J.2096-5796.2019.0017

Trajectory prediction model for crossing-based target selection

Full Text: PDF (22) HTML (173)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Background
Crossing-based target selection motion may attain less error rates and higher interactive speed in some cases. Most of the research in target selection fields are focused on the analysis of the interaction results. Additionally, as trajectories play a much more important role in crossing-based target selection compared to the other interactive techniques, an ideal model for trajectories can help computer designers make predictions about interaction results during the process of target selection rather than at the end of the whole process.
Methods
In this paper, a trajectory prediction model for crossing-based target selection tasks is proposed by taking the reference of a dynamic model theory.
Results
Simulation results demonstrate that our model performed well with regard to the prediction of trajectories, endpoints and hitting time for target-selection motion, and the average error of trajectories, endpoints and hitting time values were found to be 17.28%, 2.73mm and 11.50%, respectively.
Keywords: Target selection ; Crossing-based selection ; Trajectory prediction

Cite this article:

Hao ZHANG, Jin HUANG, Feng TIAN, Guozhong DAI, Hongan WANG. Trajectory prediction model for crossing-based target selection. Virtual Reality & Intelligent Hardware, 2019, 1(3): 330-340 DOI:10.3724/SP.J.2096-5796.2019.0017

1. St Amant R, Riedl M O. A perception/action substrate for cognitive modeling in HCI. International Journal of Human-Computer Studies, 2001, 55(1): 15–39 DOI:10.1006/ijhc.2001.0470

2. Accot J. Les tâches trajectorielles en interaction homme-machine: cas des tâches de navigation. Toulouse 1, 2001

3. Apitz G, Guimbretière F, Zhai S M. Foundations for designing and evaluating user interfaces based on the crossing paradigm. ACM Transactions on Computer-Human Interaction, 2010, 17(2): 1–42 DOI:10.1145/1746259.1746263

4. Fitts P M. The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology: General, 1992, 121(3): 262–269 DOI:10.1037//0096-3445.121.3.262

5. Accot J, Zhai S. Beyond Fitts' law: models for trajectory-based HCI tasks. In: Proceedings of the ACM SIGCHI Conference on Human factors in computing systems. ACM, 1997, 295–302

6. Apitz G, Guimbretière F, Zhai S M. Foundations for designing and evaluating user interfaces based on the crossing paradigm. ACM Transactions on Computer-Human Interaction, 2010, 17(2): 1–42 DOI:10.1145/1746259.1746263

7. Luo Y, Vogel D. Crossing-based selection with direct touch input. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, 2014, 2627–2636 DOI:10.1145/2556288.2557397

8. Forlines C, Balakrishnan R. Evaluating tactile feedback and direct vs. indirect stylus input in pointing and crossing selection tasks. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Florence, Italy, ACM, 2008, 1563–1572 DOI:10.1145/1357054.1357299

9. Dixon M, Guimbretière F, Chen N. Optimal parameters for efficient crossing-based dialog boxes. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Florence, Italy, ACM, 2008, 1623–1632 DOI:10.1145/1357054.1357307

10. Cockburn A, Ahlström D, Gutwin C. Understanding performance in touch selections: Tap, drag and radial pointing drag with finger, stylus and mouse. International Journal of Human-Computer Studies, 2012, 70(3): 218–233 DOI:10.1016/j.ijhcs.2011.11.002

11. Buxton W, Hill R, Rowley P. Issues and techniques in touch-sensitive tablet input. ACM SIGGRAPH Computer Graphics, 1985, 19(3): 215–224 DOI:10.1145/325165.325239

12. Todorov E. Optimality principles in sensorimotor control. Nature Neuroscience, 2004, 7(9): 907–915 DOI:10.1038/nn1309

13. Huang J, Peng X L, Tian F, Wang H, Dai G Z. Modeling a target-selection motion by leveraging an optimal feedback control mechanism. Science China Information Sciences, 2018, 61(4): 044101 DOI:10.1007/s11432-017-9326-8

14. Quinn P, Zhai S M. Modeling gesture-typing movements. Human–Computer Interaction, 2018, 33(3): 234–280 DOI:10.1080/07370024.2016.1215922

15. Yekutieli Y, Sagiv-Zohar R, Aharonov R, Engel Y, Hochner B, Flash T. Dynamic model of the octopus arm. I. biomechanics of the octopus reaching movement. Journal of Neurophysiology, 2005, 94(2): 1443–1458 DOI:10.1152/jn.00684.2004

16. Tahara K, Arimoto S, Sekimoto M, Luo Z W. On control of reaching movements for musculo-skeletal redundant arm model. Applied Bionics and Biomechanics, 2009, 6(1): 11–26 DOI:10.1080/11762320902789848

17. Oulasvirta A, Kim S, Lee B. Neuromechanics of a Button Press. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Montreal QC, Canada, ACM, 2018, 1–13 DOI:10.1145/3173574.3174082

18. Helbing D, Molnár P. Social force model for pedestrian dynamics. Physical Review E, 1995, 51(5): 4282 DOI:10.1103/physreve.51.4282

19. Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. Nature, 2000, 407(6803): 487–490 DOI:10.1038/35035023

20. Hajri A A, Fels S, Miller G, Ilich M. Moving Target Selection in 2D Graphical User Interfaces. In: Human-Computer Interaction–INTERACT 2011. Berlin, Heidelberg, Springer Berlin Heidelberg, 2011, 141–161 DOI:10.1007/978-3-642-23771-3_12

21. Helbing D, Johansson A. Pedestrian, crowd and evacuation dynamics. Encyclopedia of Complexity and Systems Science, 2010, 16: 697–716

email E-mail this page

Articles by authors

VRIH