Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2019, 1(2): 121-135 Published Date:2019-4-20

DOI: 10.3724/SP.J.2096-5796.2019.0016

Multi-dimensional force sensor for haptic interaction: a review

Full Text: PDF (36) HTML (162)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Haptic interaction plays an important role in the virtual reality technology, which let a person not only view the 3D virtual environment but also realistically touch the virtual environment. As a key part of haptic interaction, force feedback has become an essential function for the haptic interaction. Therefore, multi-dimensional force sensors are widely used in the fields of virtual reality and augmented reality. In this paper, some conventional multi-dimensional force sensors based on different measurement principles, such as resistive, capacitive, piezoelectric, are briefly introduced. Then the mechanical structures of the elastic body of multi-dimensional force sensors are reviewed. It is obvious that the performance of the multi-dimensional force sensor is mainly dependent upon the mechanical structure of elastic body. Furthermore, the calibration process of the force sensor is analyzed, and problems in calibration are discussed. Interdimensional coupling error is one of the main factors affecting the measurement precision of the multi-dimensional force sensors. Therefore, reducing or even eliminating dimensional coupling error becomes a fundamental requirement in the design of multi-dimensional force sensors, and the decoupling state-of-art of the multi-dimensional force sensors are introduced in this paper. At last, the trends and current challenges of multi-dimensional force sensing technology are proposed.
Keywords: Haptic interaction ; Virtual reality ; Multi-dimensional force sensor ; Elastic body ; Decoupling ; Force sensor calibration

Cite this article:

Aiguo SONG, Liyue FU. Multi-dimensional force sensor for haptic interaction: a review. Virtual Reality & Intelligent Hardware, 2019, 1(2): 121-135 DOI:10.3724/SP.J.2096-5796.2019.0016

1. Seth A, Vance J M, Oliver J H. Virtual reality for assembly methods prototyping: A review. Virtual Reality, 2011, 15(1): 5–20 DOI:10.1007/s10055-009-0153-y

2. Ebrahimi E, Babu S V, Pagano C C, Jörg S. An empirical evaluation of visuo-haptic feedback on physical reaching behaviors during 3D interaction in real and immersive virtual environments. ACM Transactions on Applied Perception, 2016, 13(4): 1–21 DOI:10.1145/2947617

3. Song A G, Wu C C, Ni D J, Li H J, Qin H Y. One-therapist to three-patient telerehabilitation robot system for the upper limb after stroke. International Journal of Social Robotics, 2016, 8(2): 319–329 DOI:10.1007/s12369-016-0343-1

4. Vu M H, Na U J. A new 6-DOF haptic device for teleoperation of 6-DOF serial robots. IEEE Transactions on Instrumentation and Measurement, 2011, 60(11): 3510–3523 DOI:10.1109/tim.2011.2164285

5. Hayward V, Astley O R, Cruz-Hernandez M, Grant D, Robles-De-la-torre G. Haptic interfaces and devices. Sensor Review, 2004, 24(1): 16–29 DOI:10.1108/02602280410515770

6. Ma J Q, Song A G. Fast estimation of strains for cross-beams six-axis Force/Torque sensors by mechanical modeling. Sensors, 2013, 13(5): 6669–6686 DOI:10.3390/s130506669

7. Qin L, Jiang C, Liu J, Duan Y. Design and calibration of a novel piezoelectric six-axis force/torque sensor. Seventh International Symposium on Precision Engineering Measurements and Instrumentation. International Society for Optics and Photonics, 2011, 8321(4):15 DOI:10.1117/12.903717

8. Dobrzynska A, Gijs M. Polymer-based flexible capacitive sensor for three-axial force measurements. Journal of Micromechanics and Microengineering, 2013, 23(1): 015009 DOI:10.1088/0960-1317/23/1/015009

9. Puangmali P, Liu H B, Seneviratne L D, Dasgupta P, Althoefer K. Miniature 3-axis distal force sensor for minimally invasive surgical palpation. ASME Transactions on Mechatronics, 2012, 17(4): 646–656 DOI:10.1109/tmech.2011.2116033

10. Fu L Y, Song A G. Dynamic characteristics analysis of the six-axis Force/Torque sensor. Journal of Sensors, 2018, 1–11 DOI:10.1155/2018/6216979

11. Kang M K, Lee S, Kim J H. Shape optimization of a mechanically decoupled six-axis force/torque sensor. Sensors and Actuators A: Physical, 2014, 209: 41–51 DOI:10.1016/j.sna.2014.01.001

12. Zhong X, Zhang X. Review of multi-dimensional force/torque sensor for robots. Transducer and Microsystem Technologies, 2015, 34(5): 1−4 DOI:10.13873/J.1000-9787(2015)05-0001-04

13. Song A G, Han Y Z, Hu H H, Li J Q. A novel texture sensor for fabric texture measurement and classification. IEEE Transactions on Instrumentation and Measurement, 2014, 63(7): 1739–1747 DOI:10.1109/tim.2013.2293812

14. Song A, Han Y, Hu H, Tian L, Wu J. Active perception-based haptic texture sensor. Sensors and Materials, 2013: 1–51 DOI:10.18494/sam.2013.834

15. Li M. Research of parallel piezoelectric six-axis Force/Torque sensor's static characteristics. Journal of Mechanical Engineering, 2014, 50(6): 1 DOI:10.3901/jme.2014.06.001

16. Liu W, Li Y J, Jia Z Y, Zhang J, Qian M. Research on parallel load sharing principle of piezoelectric six-dimensional heavy force/torque sensor. Mechanical Systems and Signal Processing, 2011, 25(1): 331–343 DOI:10.1016/j.ymssp.2010.09.008

17. Li Y J, Sun B Y, Zhang J, Qian M, Jia Z Y. A novel parallel piezoelectric six-axis heavy force/torque sensor. Measurement, 2009, 42(5): 730–736 DOI:10.1016/j.measurement.2008.12.005

18. Kim D, Lee C H, Kim B C, Lee D H, Lee H S, Nguyen C T, Kim U K, Nguyen T D, Moon H, Koo J C, NamJ-d, Choi H R. Six-axis capacitive force/torque sensor based on dielectric elastomer. Electroactive Polymer Actuators and Devices (EAPAD), 2013, 8687 DOI:10.1117/12.2009970

19. Lee D H, Kim U, Jung H, Choi H R. A capacitive-type novel six-axis Force/Torque sensor for robotic applications. IEEE Sensors Journal, 2016, 16(8): 2290–2299 DOI:10.1109/jsen.2015.2504267

20. Kim U, Lee D H, Kim Y B, Seok D Y, Choi H R. A novel six-axis Force/Torque sensor for robotic applications. ASME Transactions on Mechatronics, 2017, 22(3): 1381–1391 DOI:10.1109/tmech.2016.2640194

21. Liang Q K, Zhang D, Coppola G, Wang Y N, Wei S, Ge Y J. Multi-dimensional MEMS/Micro sensor for force and moment sensing: A review. IEEE Sensors Journal, 2014, 14(8): 2643–2657 DOI:10.1109/jsen.2014.2313860

22. Guggenheim J W, Jentoft L P, Tenzer Y, Howe R D. Robust and inexpensive six-axis Force–Torque sensors using MEMS barometers. ASME Transactions on Mechatronics, 2017, 22(2): 838–844 DOI:10.1109/tmech.2017.2654446

23. Brookhuis R A, Wiegerink R J, Lammerink T S J, Krijnen G J M. Three-axial force sensor with capacitive read-out using a differential relaxation oscillator. Baltimore, MD, USA: 2013, 1–4 DOI:10.1109/ICSENS.2013.6688398

24. Watson P C, Drake S H. Method and apparatus for six degree of freedom force sensing. US Patent: 4094192, 1978-6-13

25. Coiffet P, Chirouze M. An Introduction to Robot Technology. Dordrecht: Springer Netherlands, 1983 DOI:10.1007/978-94-011-6100-8

26. Yoshikawa T, Miyazaki T. A six-axis force sensor with three-dimensional cross-shape structure. In: International Conference on Robotics and Automation. Scottsdale, AZ, USA: 1989, 249–255 DOI:10.1109/ROBOT.1989.99997

27. Ge Y, Wu Z C, Ge Y J. State of arts and development trends toward application-oriented force/torque sensors. Robot, 2003, 25(2): 188–192 DOI:10.3321/j.issn:1002-0446.2003.02.021

28. Huang X. Hu J, Wang J. A non-diametric three-beam structure and its optimum design for six-axis wrist force sensor. Robot, 1992, 14(5): 1−7

29. Schott J. Tactile sensor with decentralised signal conditioning. The 9th IMEKO world Congress, Berlin, 1982

30. Dwarakanath T A, Dasgupta B, Mruthyunjaya T S. Design and development of a Stewart platform based force–torque sensor. Mechatronics, 2001, 11(7): 793–809 DOI:10.1016/s0957-4158(00)00048-9

31. Han K, Wang Z, Li A, Xia M, Huo Q. Design of big-scale six-axis force sensor and study on calibration test. Transducer and Microsystem Technologies, 2016, 35(5): 87–90 DOI:10.13873/J.1000-9787(2016)05-0087-04

32. Mastinu G, Gobbi M, Previati G. A new six-axis load cell. part I: Design. Experimental Mechanics, 2011, 51(3): 373–388 DOI:10.1007/s11340-010-9355-1

33. Liang Q K, Zhang D, Ge Y J, Song Q J. A novel miniature four-dimensional Force/Torque sensor with overload protection mechanism. IEEE Sensors Journal, 2009, 9(12): 1741–1747 DOI:10.1109/jsen.2009.2030975

34. Hu S S, Wang H Y, Wang Y, Liu Z S. Design of a novel six-axis wrist force sensor. Sensors, 2018, 18(9): 3120 DOI:10.3390/s18093120

35. Zhang Q, Song A, LIU Q Y, Jiang G H, Zhou B H. Design of a 3 dimensional force sensor. Acta Metrology Sinica, 2017, 39(1): 52−55 DOI:10.3969/j.issn.10001158.2018.01.12

36. Li H B, Duan Z X, Zhou J L, Li H B, Duan Z X, Zhou J L. Approach to static calibration based on coordination transformation for six-dimensions force sensor. Transducer and Microsystem Technologies, 2006, 25(3): 74–76, 80 DOI:10.3969/j.issn.1000-9787.2006.03.025

37. Jin W L, D Jr MoteC. Development and calibration of a sub-millimeter three-component force sensor. Sensors and Actuators A: Physical, 1998, 65(1): 89−94 DOI:10.1016/s0924-4247(97)01594-x

38. Chen X B, Yao Y X, Yuan Z J. The interference and calibration method of 6-axis Force/Moment sensors. Journal of Transducer Technology, 1995, 14(2): 37–40 DOI:10.13873/j.1000-97871995.02.010

39. Song A G, Wu J, Qin G, Huang W Y. A novel self-decoupled four degree-of-freedom wrist force/torque sensor. Measurement, 2007, 40(9/10): 883–891 DOI:10.1016/j.measurement.2006.11.018

40. Zhao Y Z, Jiao L H, Weng D C, Zhang D, Zheng R C. Decoupling principle analysis and development of a parallel three-dimensional force sensor. Sensors, 2016, 16(9): 1506 DOI:10.3390/s16091506

41. Wu B, Cai P. Decoupling analysis of a sliding structure six-axis Force/Torque sensor. Measurement Science Review, 2013, 13(4): 187−193 DOI:10.2478/msr-2013-0028

42. Lei J H, Qiu L K, Liu M, Song Q J, Ge Y J. Application of neural network to nonlinear static decoupling of robot wrist force sensor. In: 6th World Congress on Intelligent Control and Automation. Dalian, China: 2006, 5282−5285 DOI:10.1109/WCICA.2006.1714077

43. Fu L Y, Song A G. An optimized BP neural network based on genetic algorithm for static decoupling of a six-axis force/torque sensor. IOP Conference Series: Materials Science and Engineering, 2018, 311: 012002 DOI:10.1088/1757-899x/311/1/012002

44. Li Y J, Wang G C, Yang X, Zhang H, Han B B, Zhang Y L. Research on static decoupling algorithm for piezoelectric six axis force/torque sensor based on LSSVR fusion algorithm. Mechanical Systems and Signal Processing, 2018, 110: 509–520 DOI:10.1016/j.ymssp.2018.03.015

45. Ma J Q, Song A G, WU J. Research and application of static decoupling for 3-axis wrist force sensor. Acta Metrologica Sinica, 2011, 32(6): 517–521. DOI:10.3969/j.issn.1000-1158.2011.06.08

46. Ma J Q, Song A G, Xiao J. A robust static decoupling algorithm for 3-axis force sensors based on coupling error model and ε-SVR. Sensors, 2012, 12(11): 14537−14555 DOI:10.3390/s121114537

47. Zhang W, Lua K B, Truong V T, Senthil K A, Lim T T, Yeo K S, Zhou G Y. Design and characterization of a novel T-shaped multi-axis piezoresistive Force/Moment sensor. IEEE Sensors Journal, 2016, 16(11): 4198–4210 DOI:10.1109/jsen.2016.2538642

48. Liang Q K, Zhang D, Coppola G, Wang Y N, Wei S, Ge Y J. Multi-dimensional MEMS/Micro sensor for force and moment sensing: A review. IEEE Sensors Journal, 2014, 14(8): 2643–2657 DOI:10.1109/jsen.2014.2313860

49. Feng H M, Song F Z, Song B. Dynamic analysis of coupling system of multi-axis force sensor structure and its measuring circuits. In: International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China: 2011, 899–902 DOI:10.1109/TMEE.2011.6199347

50. Kim C, Lee C H. Development of a 6-DoF FBG force–moment sensor for a haptic interface with minimally invasive robotic surgery. Journal of Mechanical Science and Technology, 2016, 30(8): 3705–3712 DOI:10.1007/s12206-016-0732-2

51. Schlegel C, Kieckenap G, Glöckner B, Buß A, Kumme R. Traceable periodic force calibration. Metrologia, 2012, 49(3): 224–235 DOI:10.1088/0026-1394/49/3/224

52. Kobusch M. Characterization of force transducers for dynamic measurements. PTB-Mitteilungen, 2015, 125(2): 43−51

53. Vlajic N, Chijioke A. Traceable dynamic calibration of force transducers by primary means. Metrologia, 2016, 53(4): 136–148 DOI:10.1088/0026-1394/53/4/s136

54. Kobusch M, Eichstädt S. A case study in model-based dynamic calibration of small strain gauge force transducers. Acta Imeko, 2017, 6(1): 3 DOI:10.21014/acta_imeko.v6i1.433

55. Dynamic calibration of uniaxial force measuring devices and testing machines (basic principles), PTB. DOI:10.7795/550.20171212A

56. Song G M, Zhang W G, Zhai Y J. Study of dynamic decoupling of sensor based on diagonal predominance compensation. Chinese Journal of Scientific Instrument, 2001, 22(S2): 165−167 DOI:10.19650/j.cnki.cjsi.2001.s2.079

57. Ding M L, Dai D X, Wang Q. Study of Dynamic Decoupling Method for Multi-axis Sensor Based on Niche Genetic Algorithm. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, 780−789. DOI:10.1007/11941439_82

58. Wang Y, Xu D Z, Zhang J M, Xu S. Research on dynamic decoupling of six-axis force sensor base on the procedure neural networks. Journal of Chongqing University of Arts and Sciences (Social Sciences Edition), 2016, 35(5): 34−40 DOI:10.19493/j.cnki.issn1673-8004.2016.05.009

59. Fahlbusch S, Fatikow S. Micro-force sensing in a micro-robotic system. In: International Conference on Robotics and Automation. Seoul, South Korea: IEEE, 2001, 3435–3440 DOI:10.1109/ROBOT.2001.933149

60. Lee J. Apply force/torque sensors to robotic applications. Robotics, 1987, 3(2): 189−194 DOI:10.1016/0167-8493(87)90007-6

61. Park J, Kim G. Development of the 6-axis force/moment sensor for an intelligent robot's gripper. Sensors and Actuators A: Physical, 2005, 118(1): 127–134 DOI:10.1016/s0924-4247(04)00538-2

62. Luo M H, Luo X H, Pan C W. A Stewart platform-based 3-axis force sensor for robot fingers. In: Second International Conference on Mechanic Automation and Control Engineering. Hohhot, China, 2011, 37–40 DOI:10.1109/MACE.2011.5986851

63. Wood R J, Cho K J, Hoffman K. A novel multi-axis force sensor for microrobotics applications. Smart Materials and Structures, 2009, 18(12): 125002 DOI:10.1088/0964-1726/18/12/125002

64. Puangmali P, Althoefer K, Seneviratne L D, Murphy D, Dasgupta P. State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sensors Journal, 2008, 8(4): 371−381 DOI:10.1109/jsen.2008.917481

65. Puangmali P, Liu H B, Seneviratne L D, Dasgupta P, Althoefer K. Miniature 3-axis distal force sensor for minimally invasive surgical palpation. ASME Transactions on Mechatronics, 2012, 17(4): 646−656 DOI:10.1109/tmech.2011.2116033

66. Menciassi A, Eisinberg A, Scalari G, Anticoli C, Carrozza M C, Dario P. Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery. In: IEEE International Conference on Robotics and Automation. Seoul, South Korea: 2001, 626−631 DOI:10.1109/ROBOT.2001.932620

67. Papakostas T V, Lima J, Lowe M. A large area force sensor for smart skin applications. In: Sensors. Orlando, FL, USA: IEEE, 2002, 1620–1624 DOI:10.1109/ICSENS.2002.1037366

68. Seibold U, Kubler B, Hirzinger G. Prototype of instrument for minimally invasive surgery with 6-axis force sensing capability. In: International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005, 496–501 DOI:10.1109/ROBOT.2005.1570167

69. Moradi Dalvand M, Shirinzadeh B, Shamdani A H, Smith J, Zhong Y M. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(1): 11–21 DOI:10.1002/rcs.1503

70. Krouglicof N, Alonso L M, Keat W D. Development of a mechanically coupled, six degree-of-freedom load platform for biomechanics and sports medicine. In: International Conference on Systems, Man and Cybernetics. The Hague, Netherlands: IEEE, 2004: 4426–4431 DOI:10.1109/ICSMC.2004.1401228

71. Song G M, Yuan H Y, Tang Y, Song Q J, Ge Y J. A novel three-axis force sensor for advanced training of shot-put athletes. Sensors and Actuators A: Physical, 2006, 128(1): 60–65 DOI:10.1016/j.sna.2006.01.016

72. Kazerooni H. Exoskeletons for human power augmentation. In: International Conference on Intelligent Robots and Systems. Edmonton, Alta, Canada: IEEE/RSJ, 2005, 3459–3464 DOI:10.1109/IROS.2005.1545451

73. Hayward V, Astley O R, Cruz-Hernandez M, Grant D, Robles-De-la-torre G. Haptic interfaces and devices. Sensor Review, 2004, 24(1): 16–29 DOI:10.1108/02602280410515770

74. Prattichizzo D, Chinello F, Pacchierotti C, Malvezzi M. Towards wearability in fingertip haptics: A 3-DoF wearable device for cutaneous force feedback. IEEE Transactions on Haptics, 2013, 6(4): 506–516 DOI:10.1109/toh.2013.53

75. Naghibi H, Hoitzing W B, Stramigioli S, Abayazid M. A flexible endoscopic sensing module for force haptic feedback integration. In: 9th Cairo International Biomedical Engineering Conference (CIBEC). Cairo, Egypt: 2018, 158–161 DOI:10.1109/CIBEC.2018.8641817

email E-mail this page

Articles by authors

VRIH

BAIDU SCHOLAR

WANFANG DATA