Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2019, 1(2): 163-175 Published Date:2019-4-20

DOI: 10.3724/SP.J.2096-5796.2019.0011

Haptic interface using tendon electrical stimulation with consideration of multimodal presentation

Full Text: PDF (40) HTML (301)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Background
Our previous studies have shown that electrical stimulation from the skin surface to the tendon region (Tendon Electrical Stimulation: TES) can elicit a force sensation, and adjusting the current parameters can control the amount of the sensation. TES is thought to present a proprioceptive force sensation by stimulating receptors or sensory nerves responsible for recognizing the magnitude of the muscle contraction existing inside the tendon, so it can be a proprioceptive module of a small-size, low-cost force feedback device. But there is also suspect that TES presents only strong, noisy skin sensation. From previous study, it was found that TES has some limitation on varying sensations.
Methods
In this study, in addition to characterizing the proprioceptive sensation induced by TES, we constructed a multimodal presentation system reproducing a situation in which force is applied to the hand was offered, so as to investigate whether TES contributed to the reproduction of haptics cooperating with other modalities, rather than disturbing them. Specifically, we used vibration to present a cutaneous sensation and a visual head mounted display (HMD) system to present simultaneous images. Using this system, we also evaluated the efficacy of TES itself and that of the multimodal system involving TES.
Results
We found that TES, along with visual and vibration stimulation, contributed to the perception of a certain force.
Conclusions
Thus, TES appears to be an effective component of multimodal force sense presentation systems.
Keywords: Tendon Electrical Stimulation ; Proprioception ; Multimodal ; Force sensation

Cite this article:

Akifumi TAKAHASHI, Kenta TANABE, Hiroyuki KAJIMOTO. Haptic interface using tendon electrical stimulation with consideration of multimodal presentation. Virtual Reality & Intelligent Hardware, 2019, 1(2): 163-175 DOI:10.3724/SP.J.2096-5796.2019.0011

1. Takahashi A, Tanabe K, Kajimoto H. Relationship Between Force Sensation and Stimulation Parameters in Tendon Electrical Stimulation. In. Singapore: Springer Singapore, 2018, 233–238 DOI:10.1007/978-981-10-4157-0_40

2. Tamaki E, Miyaki T, Rekimoto J. PossessedHand: techniques for controlling human hands using electrical muscles stimuli. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Vancouver, BC, Canada, ACM, 2011, 543–552 DOI:10.1145/1978942.1979018

3. Lopes P, Ion A, Baudisch P. Impacto: simulating physical impact by combining tactile stimulation with electrical muscle stimulation. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. Charlotte, NC, USA, ACM, 2015, 11–19 DOI:10.1145/2807442.2807443

4. Tamaki E, Chan T, Iwasaki K. UnlimitedHand: input and output hand gestures with less calibration time. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology. Tokyo, Japan, ACM, 2016, 163–165 DOI:10.1145/2984751.2985743

5. Minamizawa K, Prattichizzo D, Tachi S. Simplified design of haptic display by extending one-point kinesthetic feedback to multipoint tactile feedback. In: 2010 IEEE Haptics Symposium, 2010, 257–260 DOI:10.1109/HAPTIC.2010.5444646

6. Amemiya T, Maeda T. Asymmetric oscillation distorts the perceived heaviness of handheld objects. IEEE Transactions on Haptics, 2008, 1(1): 9–18 DOI:10.1109/toh.2008.5

7. Ebied A M, Kemp G J, Frostick S P. The role of cutaneous sensation in the motor function of the hand. Journal of Orthopaedic Research, 2004, 22(4): 862–866 DOI:10.1016/j.orthres.2003.12.005

8. Prattichizzo D, Pacchierotti C, Rosati G. Cutaneous force feedback as a sensory subtraction technique in haptics. IEEE Transactions on Haptics, 2012, 5(4): 289–300 DOI:10.1109/toh.2012.15

9. Pusch A, Lécuyer A. Pseudo-haptics: from the theoretical foundations to practical system design guidelines. In: Proceedings of the 13th international conference on multimodal interfaces. Alicante, Spain, ACM, 2011, 57C64 DOI:10.1145/2070481.2070494

10. Lécuyer A, BurkhardtJ-M, Etienne L. Feeling bumps and holes without a haptic interface: the perception of pseudo-haptic textures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Vienna, Austria, ACM, 2004, 239–246 DOI:10.1145/985692.985723

11. Pusch A, Martin O, Coquillart S. HEMP-hand-displacement-based pseudo-haptics: a study of a force field application. In: 2008 IEEE Symposium on 3D User Interfaces. 2008, 59–66 DOI:10.1109/3DUI.2008.4476593

12. Minamizawa K, Kajimoto H, Kawakami N, Tachi S. A wearable haptic display to present the gravity sensation-preliminary observations and device design. In: Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. 2007, 133–138 DOI:10.1109/WHC.2007.15

13. Matsue R, Sato M, Hashimoto Y, Kajimoto H. “Hanger reflex”: A reflex motion of a head by temporal pressure for wearable interface. In: 2008 SICE Annual Conference, 2008, 1463–1467 DOI:10.1109/SICE.2008.4654889

14. Kuniyasu Y, Sato M, Fukushima S, Kajimoto H. Transmission of forearm motion by tangential deformation of the skin. In: Proceedings of the 3rd Augmented Human International Conference. Megève, France, ACM, 2012, 1–4 DOI:10.1145/2160125.2160141

15. Yem V, Vu K, Kon Y, Kajimoto H. Effect of electrical stimulation haptic feedback on perceptions of softness-hardness and stickiness while touching a virtual object. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 2018, 89–96 DOI:10.1109/VR.2018.8446403

16. Amemiya T, Gomi H. Active manual movement improves directional perception of illusory force. IEEE Transactions on Haptics, 2016, 9(4): 465–473 DOI:10.1109/toh.2016.2587624

17. Rekimoto J. Traxion: a tactile interaction device with virtual force sensation. In: Proceedings of the 26th annual ACM symposium on User interface software and technology. St. Andrews, Scotland, United Kingdom, ACM, 2013, 427–432 DOI:10.1145/2501988.2502044

18. Culbertson H, Walker J M, Raitor M, Okamura A M. A wearable asymmetric vibration excitation system for presenting three-dimensional translation and rotation cues. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver, Colorado, USA, ACM, 2017, 4972–4982 DOI:10.1145/3025453.3025741

19. Okamura A M, Cutkosky M R, Dennerlein J T. Reality-based models for vibration feedback in virtual environments. ASME Transactions on Mechatronics, 2001, 6(3): 245–252 DOI:10.1109/3516.951362

20. Lopes P, Baudisch P. Muscle-propelled force feedback: bringing force feedback to mobile devices. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Paris, France, ACM, 2013, 2577–2580 DOI:10.1145/2459236.2459276

21. Pfeiffer M, Duente T, Rohs M. Let your body move: a prototyping toolkit for wearable force feedback with electrical muscle stimulation. In: Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services. Florence, Italy, ACM, 2016, 418–427 DOI:10.1145/2935334.2935348

22. Kajimoto H. Electrotactile display with real-time impedance feedback using pulse width modulation. IEEE Transactions on Haptics, 2012, 5(2): 184–188 DOI:10.1109/toh.2011.39

23. Wellman P, Howe R D. Towards realistic vibrotactile display in virtual environments. In: Proceedings of the ASME Dynamic Systems and Control Division. 1995, 57(2): 713–718

24. Goodwin G M, McCloskey D I, Matthews P B C. The contribution of muscle afferents to keslesthesia shown by vibration induced illusionsof movement and by the effects of paralysing joint afferents. Brain, 1972, 95(4): 705–748 DOI:10.1093/brain/95.4.705

email E-mail this page

Articles by authors

VRIH