Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2019, 1(3): 251-264

Published Date:2019-6-20 DOI: 10.3724/SP.J.2096-5796.2019.0006

Review of studies on target acquisition in virtual reality based on the crossing paradigm

Abstract

Crossing is a fundamental paradigm for target selection in human-computer interaction systems. This paradigm was first introduced to virtual reality (VR) interactions by Tu et al., who investigated its performance in comparison to pointing, and concluded that crossing is generally no less effective than pointing and has unique advantages. However, owing to the characteristics of VR interactions, there are still many factors to consider when applying crossing to a VR environment. Thus, this review summarizes the main techniques for object selection in VR and crossing-related studies. Then, factors that may affect crossing interactions are analyzed from the perspectives of the input space and visual space. The aim of this study is to provide a reference for future studies on target selection based on the crossing paradigm in virtual reality.

Keyword

Virtual reality ; Target selection ; Crossing paradigm ; Pointing paradigm

Cite this article

Susu HUANG, Daqing QI, Jiabin YUAN, Huawei TU. Review of studies on target acquisition in virtual reality based on the crossing paradigm. Virtual Reality & Intelligent Hardware, 2019, 1(3): 251-264 DOI:10.3724/SP.J.2096-5796.2019.0006

References

1. Tu H W, Huang S S, Yuan J B, Ren X S, Tian F. Crossing-based selection with virtual reality head-mounted displays. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, ACM, 2019 DOI:10.1145/3290605.3300848

2. Argelaguet F, Andujar C. A survey of 3D object selection techniques for virtual environments. Computers & Graphics, 2013, 37(3): 121–136 DOI:10.1016/j.cag.2012.12.003

3. Grossman T, Balakrishnan R. The design and evaluation of selection techniques for 3D volumetric displays. In: Proceedings of the 19th annual ACM symposium on User interface software and technology. Montreux, Switzerland, ACM, 2006 DOI:10.1145/1166253.1166257

4. Steinicke F, Ropinski T, Hinrichs K. Object selection in virtual environments using an improved virtual pointer metaphor//Computational Imaging and Vision. Dordrecht, Kluwer Academic Publishers, 2006, 320–326 DOI:10.1007/1-4020-4179-9_46

5. Cournia N, Smith J D, Duchowski A T. Gaze- vs. hand-based pointing in virtual environments. In: Human factors in computing systems. Lauderdale, Florida, USA, ACM, 2003 DOI:10.1145/765891.765982

6. Vanacken L, Grossman T, Coninx K. Exploring the effects of environment density and target visibility on object selection in 3D virtual environments. In: 2007 IEEE Symposium on 3D User Interfaces. Charlotte, NC, USA, IEEE, 2007 DOI:10.1109/3dui.2007.340783

7. Poupyrev I, Billinghurst M, Weghorst S, Ichikawa T. The go-go interaction technique. In: Proceedings of the 9th annual ACM symposium on User interface software and technology. Seattle, Washington, USA, ACM,1996 DOI:10.1145/237091.237102

8. Zhai S, Buxton W, Milgram P. The "Silk Cursor": Investigating Transparency for 3D Target Acquisition, 1994 DOI:10.1145/191666.191822

9. Grossman T, Balakrishnan R, Kurtenbach G, Fitzmaurice G, Khan A. Creating principal 3D curves with digital tape drawing. Minneapolis, Minnesota, USA, ACM, 2002 DOI:10.1145/503376.503398

10. Bowman D A, Johnson D B, Hodges L F. Testbed evaluation of virtual environment interaction techniques. Presence: Teleoperators and Virtual Environments, 2001, 10(1): 75–95 DOI:10.1162/105474601750182333

11. Haan G D, Koutek M, Post F H. IntenSelect: Using Dynamic Object Rating for Assisting 3D Object Selection. In: Workshop on Immersive Projection Technology, 2005 DOI:10.2312/EGVE/IPT_EGVE2005/201-209

12. Pierce J S, Forsberg A S, Conway M J, Hong S, Zeleznik R C, Mine M R. Image plane interaction techniques in 3D immersive environments. In: Proceedings of the 1997 symposium on Interactive 3D graphics. Providence, Rhode Island, USA, ACM, 1997 DOI:10.1145/253284.253303

13. Forsberg A, Herndon K, Zeleznik R. Aperture based selection for immersive virtual environments. In: Proceedings of the 9th annual ACM symposium on User interface software and technology. Seattle, Washington, USA, ACM, 1996 DOI:10.1145/237091.237105

14. Accot J, Zhai S M. More than dotting the i's: - foundations for crossing-based interfaces. In: Proceedings of the SIGCHI conference on Human factors in computing systems Changing our world, changing ourselves. Minneapolis, Minnesota, USA, ACM, 2002 DOI:10.1145/503376.503390

15. Fitts P M. The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology: General, 1992, 121(3): 262–269 DOI:10.1037//0096-3445.121.3.262

16. Accot J, Zhai S M. Beyond fitts' law. In: Proceedings of the SIGCHI conference on Human factors in computing systems. Atlanta, Georgia, USA, ACM, 1997 DOI:10.1145/258549.258760

17. Forlines C, Balakrishnan R. Evaluating tactile feedback and direct vs. indirect stylus input in pointing and crossing selection tasks. In: Proceeding of the twenty-sixth annual CHI conference on Human factors in computing systems. Florence, Italy, ACM, 2008 DOI:10.1145/1357054.1357299

18. Apitz G, Guimbretière F. CrossY. In: Proceedings of the 17th annual ACM symposium on User interface software and technology. Santa Fe, NM, USA, ACM, 2004 DOI:10.1145/1029632.1029635

19. Dixon M, Guimbretière F, Chen N. Optimal parameters for efficient crossing-based dialog boxes. In: Proceeding of the twenty-sixth annual CHI conference on Human factors in computing systems. Florence, Italy, ACM, 2008 DOI:10.1145/1357054.1357307

20. Wobbrock J O, Gajos K Z. Goal crossing with mice and trackballs for people with motor impairments. ACM Transactions on Accessible Computing, 2008, 1(1): 1–37 DOI:10.1145/1361203.1361207

21. Dragicevic P. Combining crossing-based and paper-based interaction paradigms for dragging and dropping between overlapping windows. In: Proceedings of the 17th annual ACM symposium on User interface software and technology. Santa Fe, NM, USA, ACM, 2004 DOI:10.1145/1029632.1029667

22. Sulaiman A N, Olivier P. Attribute Gates. In: Proceedings of the 21st annual ACM symposium on User interface software and technology. Monterey, CA, USA, ACM, 2008 DOI:10.1145/1449715.1449726

23. Yoshikawa T, Shizuki B, Tanaka J. HandyWidgets. In: Proceedings of the 2012 ACM international conference on Interactive tabletops and surfaces. Cambridge, Massachusetts, USA, ACM, 2012 DOI:10.1145/2396636.2396667

24. Perin C, Dragicevic P. Manipulating multiple sliders by crossing. In: Proceedings of the 26th Conference on interaction Homme-Machine. 2014 DOI:10.1145/2670444.2670449

25. Luo Y X, Vogel D. Crossing-based selection with direct touch input. In: Proceedings of the 32nd annual ACM conference on Human factors in computing systems. Toronto, Ontario, Canada, ACM, 2014 DOI:10.1145/2556288.2557397

26. Luo Y X, Vogel D. Pin-and-cross. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. DOI:10.1145/2807442.2807444

27. Lv Z. Towards the design of effective freehand gestural interaction for interactive TV. Journal of Intelligent & Fuzzy Systems, 2016, 31(5): 2659–2674 DOI:10.3233/jifs-169106

28. Vogel D, Balakrishnan R. Distant freehand pointing and clicking on very large, high resolution displays. In: Proceedings of the 18th annual ACM symposium on User interface software and technology. Seattle, WA, USA, ACM, 2005 DOI:10.1145/1095034.1095041

29. Andujar C, Argelaguet F. Anisomorphic ray-casting manipulation for interacting with 2D GUIs. Computers & Graphics, 2007, 31(1): 15–25 DOI:10.1016/j.cag.2006.09.003

30. Frees S, Kessler G D. Precise and rapid interaction through scaled manipulation in immersive virtual environments. In: IEEE Proceedings. Virtual Reality, 2005. Bonn, Germany, IEEE, 2005 DOI:10.1109/vr.2005.1492759

31. Stuerzlinger, W. Considerations for Targets in 3D Pointing Experiments. In: The Workshop on Interactive Surfaces for Interaction with Stereoscopic3d. 2014

32. Das K, Borst C W. An evaluation of menu properties and pointing techniques in a projection-based VR environment. In: 2010 IEEE Symposium on 3D User Interfaces (3DUI). Waltham, MA, USA, IEEE, 2010 DOI:10.1109/3dui.2010.5444721

33. Dachselt R, Hübner A. Three-dimensional menus: A survey and taxonomy. Computers & Graphics, 2007, 31(1): 53–65 DOI:10.1016/j.cag.2006.09.006

34. Bowman D A, Wingrave C A. Design and evaluation of menu systems for immersive virtual environments. In: Proceedings IEEE Virtual Reality, 2001 DOI:10.1109/vr.2001.913781

35. Mine M R. Virtual environment interaction techniques, 1995

36. Jacoby R H, Ellis S R. Using virtual menus in a virtual environment. In: Visual Data Interpretation. International Society for Optics and Photonics. 1992

37. Liang J, Green M. JDCAD: A highly interactive 3D modeling system. In: International Conference on Cad and Computer Graphics. Beijing, China, 1994

38. Ramcharitar A A, Teather R J R. EZCursor VR: 2D selection with virtual reality head-mounted displays, 2018

39. Teather R J, Stuerzlinger W. Pointing at 3d target projections with one-eyed and stereo cursors. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Paris, France, 2013 DOI:10.1145/2470654.2470677

40. Kelly J W, Cherep L A, Klesel B, Siegel Z D, George S. Comparison of two methods for improving distance perception in virtual reality. ACM Transactions on Applied Perception, 2018, 15(2): 1–11 DOI:10.1145/3165285

41. Armbrüster C, Wolter M, Kuhlen T, Spijkers W, Fimm B. Depth perception in virtual reality: distance estimations in peri- and extrapersonal space. CyberPsychology & Behavior, 2008, 11(1): 9–15 DOI:10.1089/cpb.2007.9935

42. Renner R S, Velichkovsky B M, Helmert J R. The perception of egocentric distances in virtual environments—A review. ACM Computing Surveys, 2013, 46(2): 1–40 DOI:10.1145/2543581.2543590

43. Naceri A, Chellali R. Depth perception within peripersonal space using head-mounted display. Presence: Teleoperators and Virtual Environments, 2011, 20(3): 254–272 DOI:10.1162/pres_a_00048

44. Dachselt R, Hübner A. A survey and taxonomy of 3D menu techniques. In: Proceedings of the 12th Eurographics conference on Virtual Environments. Lisbon, Portugal: Eurographics Association, 2006, 89–99

45. Argelaguet F, Andujar C. Improving 3D selection in VEs through expanding targets and forced disocclusion. Smart Graphics. Berlin, Heidelberg: Springer Berlin Heidelberg, 45–57 DOI:10.1007/978-3-540-85412-8_5

46. Alfano P L, Michel G F. Restricting the field of view: perceptual and performance effects. Perceptual and Motor Skills, 1990, 70(1): 35–45 DOI:10.2466/pms.1990.70.1.35

47. Jeannerod M. Living in a world transformed. Perceptual and performatory adaptation to visual distortion. Neuropsychologia, 1983, 21(2): 184–185 DOI:10.1016/0028-3932(83)90090-8

48. Lin J J W, Duh H B L, Parker D E, Abi-Rached H, Furness T A. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In: Proceedings IEEE Virtual Reality 2002. Orlando, FL, USA, IEEE, 2002 DOI:10.1109/vr.2002.996519

49. Xiao R, Benko H. Augmenting the field-of-view of head-mounted displays with sparse peripheral displays. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, Lisbon, Portugal, ACM, 2016 DOI:10.1145/2858036.2858212

50. Gabbard J L. A taxonomy of usability characteristics in virtual environments. Virginia Tech, 1997

51. Hinckley K, Pausch R, Goble J C, Kassell N F. A survey of design issues in spatial input. In: Proceedings of the 7th annual ACM symposium on User interface software and technology. Marina del Rey, California, USA, ACM, 1994 DOI:10.1145/192426.192501

52. Elmqvist N, Tsigas P. A taxonomy of 3D occlusion management for visualization. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(5): 1095–1109 DOI:10.1109/tvcg.2008.59

53. Stoakley R, Conway M J, Pausch R. Virtual reality on a WIM. In: Proceedings of the SIGCHI conference on Human factors in computing systems. Denver, Colorado, USA, ACM, 1995 DOI:10.1145/223904.223938

Related

1. Yang LI, Dong WU, Jin HUANG, Feng TIAN, Hong'an WANG, Guozhong DAI, Influence of multi-modality on moving target selection in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(3): 303-315

2. Hao ZHANG, Jin HUANG, Feng TIAN, Guozhong DAI, Hongan WANG, Trajectory prediction model for crossing-based target selection Virtual Reality & Intelligent Hardware 2019, 1(3): 330-340

3. Yang LI, Jin HUANG, Feng TIAN, Hong-An WANG, Guo-Zhong DAI, Gesture interaction in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(1): 84-112

4. Athirah SYAMIMI, Yiwei GONG, Ryan LIEW, VR industrial applicationsA singapore perspective Virtual Reality & Intelligent Hardware 2020, 2(5): 409-420

5. Yukang YAN, Xin YI, Chun YU, Yuanchun SHI, Gesture-based target acquisition in virtual and augmented reality Virtual Reality & Intelligent Hardware 2019, 1(3): 276-289

6. Yuan GAO, Le XIE, A review on the application of augmented reality in craniomaxillofacial surgery Virtual Reality & Intelligent Hardware 2019, 1(1): 113-120

7. Yuan CHANG, Guo-Ping WANG, A review on image-based rendering Virtual Reality & Intelligent Hardware 2019, 1(1): 39-54

8. Shiguang QIU, Shuntao LIU, Deshuai KONG, Qichang HE, Three-dimensional virtual-real mapping of aircraft autom-atic spray operation and online simulation monitoring Virtual Reality & Intelligent Hardware 2019, 1(6): 611-621

9. Xu PENG, Zhenyu GAO, Yitong DING, Dongfeng ZHAO, Xiaoyu CHI, Study of ghost image suppression in polarized catadioptric virtual reality optical systems Virtual Reality & Intelligent Hardware 2020, 2(1): 70-78

10. Zhiming HU, Sheng LI, Meng GAI, Temporal continuity of visual attention for future gaze prediction in immersive virtual reality Virtual Reality & Intelligent Hardware 2020, 2(2): 142-152

11. Hengwei XU, Siru LI, Wenpeng SONG, Jiajun SUN, Xinli WU, Xiaoqi WANG, Wenzhen YANG, Zhigeng PAN, Abdennour EI RHALIBI, Thermal perception method of virtual chemistry experiments Virtual Reality & Intelligent Hardware 2020, 2(4): 305-315

12. TJ MATTHEWS, Feng TIAN, Tom DOLBY, Interaction design for paediatric emergency VR training Virtual Reality & Intelligent Hardware 2020, 2(4): 330-344

13. Hongxin ZHANG, Jin ZHANG, Xue YIN, Kan ZHOU, Zhigeng PAN, Abdennour EI RHALIBI, Cloud-to-end rendering and storage management for virtual reality in experimental education Virtual Reality & Intelligent Hardware 2020, 2(4): 368-380

14. Xiang ZHOU, Liyu TANG, Ding LIN, Wei HAN, Virtual & augmented reality for biological microscope in experiment education Virtual Reality & Intelligent Hardware 2020, 2(4): 316-329

15. Haoyu WANG, Jianhuang WU, A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction Virtual Reality & Intelligent Hardware 2021, 3(4): 302-314

16. Na ZHANG, Liwen TAN, Fengying LI, Bing HAN, Yifa XU, Development and application of digital assistive teaching system for anatomy Virtual Reality & Intelligent Hardware 2021, 3(4): 315-335

17. Lihui HUANG, Siti Faatihah Binte Mohd TAIB, Ryan Aung BA, Zhe An GOH, Mengshan XU, Virtual reality research and development in NTU Virtual Reality & Intelligent Hardware 2020, 2(5): 394-408

18. Stéphanie PHILIPPE, Alexis D. SOUCHET, Petros LAMERAS, Panagiotis PETRIDIS, Julien CAPORAL, Gildas COLDEBOEUF, Hadrien DUZAN, Multimodal teaching, learning and training in virtual reality: a review and case study Virtual Reality & Intelligent Hardware 2020, 2(5): 421-442

19. Jia Ming LEE, Xinxing XIA, Clemen OW, Felix CHUA, Yunqing GUAN, VEGO: A novel design towards customizable and adjustable head-mounted display for VR Virtual Reality & Intelligent Hardware 2020, 2(5): 443-453

20. Jingcheng QIAN, Yancong MA, Zhigeng PAN, Xubo YANG, Effects of Virtual-real fusion on immersion, presence, and learning performance in laboratory education Virtual Reality & Intelligent Hardware 2020, 2(6): 569-584

21. Dangxiao WANG, Yuan GUO, Shiyi LIU, Yuru ZHANG, Weiliang XU, Jing XIAO, Haptic display for virtual reality: progress and challenges Virtual Reality & Intelligent Hardware 2019, 1(2): 136-162

22. Aiguo SONG, Liyue FU, Multi-dimensional force sensor for haptic interaction: a review Virtual Reality & Intelligent Hardware 2019, 1(2): 121-135

23. Wenmin ZHU, Xiumin FAN, Yanxin ZHANG, Applications and research trends of digital human models in the manufacturing industry Virtual Reality & Intelligent Hardware 2019, 1(6): 558-579

24. Mohammad Mahmudul ALAM, S. M. Mahbubur RAHMAN, Affine transformation of virtual 3D object using 2D localization of fingertips Virtual Reality & Intelligent Hardware 2020, 2(6): 534-555

25. Yuan WEI, Dongdong GUAN, Qiuchen WANG, Xiangxian LI, Yulong BIAN, Pu QIN, Yanning XU, Chenglei YANG, Virtual fire drill system supporting co-located collaboration Virtual Reality & Intelligent Hardware 2019, 1(3): 290-302