Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2019, 1(1): 10-20

Published Date:2019-2-20 DOI: 10.3724/SP.J.2096-5796.2018.0009

Prospects and challenges in augmented reality displays

Abstract

Augmented reality (AR) displays are attracting significant attention and efforts. In this paper, we review the adopted device configurations of see-through displays, summarize the current development status and highlight future challenges in micro-displays. A brief introduction to optical gratings is presented to help understand the challenging design of grating-based waveguide for AR displays. Finally, we discuss the most recent progress in diffraction grating and its implications.

Keyword

Near-eye displays ; See-through display ; Augmented reality ; Micro-displays ; Bragg gratings

Cite this article

Yun-Han LEE, Tao ZHAN, Shin-Tson WU. Prospects and challenges in augmented reality displays. Virtual Reality & Intelligent Hardware, 2019, 1(1): 10-20 DOI:10.3724/SP.J.2096-5796.2018.0009

References

1. Cakmakci O, Rolland J. Head-worn displays: a review. Journal of Display Technology, 2006, 2(3): 199–216 DOI:10.1109/JDT.2006.879846

2. Cado H, Moliton R. Polarization splitter, method of manufacturing same and ophthalmic lens incorporating projection inserts containing it. U.S. Patent, 0136082.A1, 2004–7–15

3. Martinez M A, Saeedi E, Amirparviz B. Head-mounted display including integrated projector. U.S. Patent, 9128285.B2, 2005–9–8

4. Wang J, Liang Y, Xu M. Design of a see-through head-mounted display with a freeform surface. Journal of the Optical Society of Korea, 2015, 19(6): 614–618 DOI:10.3807/JOSK.2015.19.6.614

5. Pulli K. Meta 2: immersive optical‐see‐through augmented reality. IEEE SigPort, 2017, 48(1): 132–133

6. Takahashi K. Head or face mounted image display apparatus. U.S. Patent, 5701202, 1997–12–23

7. Yamazaki S, Inoguchi K, Saito Y, Morishima H, Taniguchi N. Thin wide-field-of-view HMD with free-form-surface prism and applications. Proc SPIE, 1999, 3639: 453–462 DOI:10.1117/12.349411

8. Cheng D, Wang Y, Chang J. Design of a lightweight and wide field-of-view HMD system with freeform surface prism. Infrared and Laser Engineering, 2007, 36 (3): 309–311

9. Cheng D, Wang Y, Hua H, Talha M M. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Applied Optics, 2009, 48(14): 2655–2668 DOI:10.1364/AO.48.002655

10. Amitai Y. A two‐dimensional aperture expander for ultra‐compact, high‐performance head‐worn displays. SID International Symposium Digest of Techninal Papers, 2005, 36(1): 360–363 DOI:10.1889/1.2036446

11. Amitai Y. Substrate-guided optical device utilizing thin transparent layer. U.S. Patent, 772443.B2, 2010–5–25

12. Cheng D, Wang Y, Xu C, Song W, Jin G. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Optics Express, 2014, 22(17): 20705–20719 DOI:10.1364/OE.22.020705

13. Wang Q, Cheng D, Hou Q, Hu Y, Wang Y. Stray light and tolerance analysis of an ultrathin waveguide display. Applied Optics, 2015, 54(28): 8354–8362 DOI:10.1364/AO.54.008354

14. Gu L, Cheng D, Wang Q, Hou Q, Wang Y. Design of a two-dimensional stray-light-free geometrical waveguide head-up display. Applied Optics, 2018, 57(31): 9246–9256 DOI:10.1364/AO.57.009246

15. Frommer A. Lumus optical technology for AR. SID International Symposium Digest of Techninal Papers , 2017, 48(1): 134–135 DOI:10.1002/sdtp.11589

16. Amitai Y, Reinhorn S, Friesem A A. Visor-display design based on planar holographic optics. Applied Optics, 1995, 34(8): 1352-1356 DOI:10.1364/AO.34.001352

17. Levola T. Diffractive optics for virtual reality displays. SID International Symposium Digest of Techninal Papers , 2006, 14(5): 467–475 DOI:10.1889/1.2206112

18. Mukawa H, Akutsu K, Matsumura I, Nakano S, Yoshida T, Kuwahara M, Aiki K. A full-color eyewear display using planar waveguides with reflection volume holograms. SID International Symposium Digest of Techninal Papers, 2009, 17(3): 185–193 DOI:10.1889/JSID17.3.185

19. Dobrowolski J A, Sullivan B T, Bajcar R C. Optical interference, contrast-enhanced electroluminescent device. Applied Optics, 1992, 31(28): 5988–5996 DOI:10.1364/AO.31.005988

20. Chen H, Tan G, Wu S T. Ambient contrast ratio of LCDs and OLED displays. Optics Express, 2017, 25(26): 33643–33656 DOI:10.1364/OE.25.033643

21. Handschy M A, McNeil J R, Weissman P E. Ultrabright head-mounted displays using LED-illuminated LCOS. In: Helmet-and Head-Mounted Displays XI: Technologies and Applications. International Society for Optics and Photonics, 2006, 62240S DOI:10.1117/12.668481

22. Huang Y, Liao E, Chen R, Wu S-T. Liquid-Crystal-on-Silicon for Augmented Reality Displays,2018, 8(12): 2366 DOI:10.3390/app8122366

23. Pettitt G, Ferri J, Thompson J. Practical application of TI DLP® technology in the next generation head-up display system. SID International Symposium Digest of Techninal Papers, 2015, 46(1): 700–703 DOI:10.1002/sdtp.10269

24. Haas G. Microdisplays for augmented and virtual reality. SID International Symposium Digest of Techninal Papers, 2018, 49(1): 506–509 DOI:10.1002/sdtp.12445

25. Ghosh A, Donoghue E P, Khayrullin I, Ali T, Wacyk l, Tice K, Vazan F, Prache O, Wang Q, Sziklas L, Fellowes D, Draper R. Ultra-High-Brightness 2K×2K full-color OLED microdisplay using direct patterning of OLED emitters. SID International Symposium Digest of Techninal Papers, 2017, 48(1): 226–229 DOI:10.1002/sdtp.11674

26. El-Ghoroury H S, ChuangC-L, Alpaslan Z Y. Quantum photonic imager (QPI): A novel display technology that enables more than 3D applications. SID International Symposium Digest of Techninal Papers, 2015, 46(1): 371–374 DOI:10.1002/sdtp.10255

27. Templier F. GaN‐based emissive microdisplays: A very promising technology for compact, ultra‐high brightness display systems. Journal of the Society for Information Display, 2016, 24(11): 669–675 DOI:10.1002/jsid.516

28. Zhang L, Ou F, Chong W C, Chen Y, Li Q. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers—A mass manufacturable approach for active matrix micro-LED micro-displays. Journal of the Society for Information Display, 2018, 26(3): 137–145 DOI:10.1002/jsid.649

29. Olivier F, Daami A, Dupré L, Henry F, Aventurier B, Templier F. 25-4: investigation and improvement of 10μm Pixel-pitch GaN-based Micro-LED arrays with very high brightness. SID International Symposium Digest of Techninal Papers, 2017, 48(1): 353–356 DOI:10.1002/sdtp.11615

30. Kress B C, Cummings W J. Towards the ultimate mixed reality experience: HoloLens display architecture choices. SID International Symposium Digest of Techninal Papers, 2017, 48 (1): 127–131 DOI:10.1002/sdtp.11586

31. Solymar L, Cooke D J. Volume Holography and Volume Gratings. Academic press, 1981

32. Gleeson M R, Sheridan J T. A review of the modelling of free-radical photopolymerization in the formation of holographic gratings. Journal of Optics A: Pure and Applied Optics, 2009, 11(2): 24008 DOI:10.1088/1464-4258/11/2/024008

33. BruderF-K, Fäcke T, Hagen R, Hönel D, Orselli E, Rewitz C, Rölle T, Walze G. Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film. In: Optical Systems Design 2015: Optical Design and Engineering VI. International Society for Optics and Photonics, 2015, 96260T DOI: 10.1117/12.2191587

34. Rasmussen T. Overview of high-efficiency transmission gratings for molecular spectroscopy. Spectroscopy, 2014, 29(4): 32–39

35. Sutherland R L, Natarajan L V, Tondiglia V P, Bunning T J. Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes. Chemistry of Materials, 1993, 5(10): 1533–1538 DOI:10.1021/cm00034a025

36. Sutherland R L, Tondiglia V P, Natarajan L V, Bunning T J, Adams W W. Electrically switchable volume gratings in polymer‐dispersed liquid crystals. Applied Physics Letters, 1994, 64(9): 1074–1076 DOI:10.1063/1.110936

37. Sutherland R L. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model. Journal of the Optical Society of America B, 2002, 19(12): 2995–3003 DOI:10.1364/JOSAB.19.002995

38. Liu Y J, Sun X W. Holographic polymer-dispersed liquid crystals materials, formation, and applications. Advances in OptoElectronics, 2008, 1: 684349 DOI:10.1155/2008/684349

39. Waldern J D, Grant A J, Popovich M M. DigiLens AR HUD waveguide technology. SID International Symposium Digest of Techninal Papers, 2018, 49 (1): 204–207 DOI:10.1002/sdtp.12523

40. Moharam M G, Pommet D A, Grann E B, Gaylord T K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. Journal of the Optical Society of America A, 1995, 12(5): 1077–1086 DOI:10.1364/JOSAA.12.001077

41. Levola T, Laakkonen P. Replicated slanted gratings with a high refractive index material for in and outcoupling of light. Optics Express, 2007, 15(5): 2067–2074 DOI:10.1364/OE.15.002067

42. Laakkonen P, Siitonen S, Levola T, Kuittinen M. High efficiency diffractive incouplers for light guides. In: Integrated Optics: Devices, Materials, and Technologies XII. International Society for Optics and Photonics, 2008, 68960E DOI:10.1117/12.768666

43. Äyräs P, Saarikko P, Levola T. Exit-pupil expander with a large field of view based on diffractive optics. Journal of the Society for Information Display, 2009, 17(8): 659–664 DOI:10.1889/JSID17.8.659

44. Bai B, Laukkanen J, Kuittinen M, Siitonen S. Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides. Applied Optics, 2010, 49(28): 5454–5464 DOI:10.1364/AO.49.005454

45. Weng Y, Xu D, Zhang Y, Li X, Wu S-T. Polarization volume grating with high efficiency and large diffraction angle. Optics Express, 2016, 24(16): 17746–17759 DOI:10.1364/OE.24.017746

46. Gao K, McGinty C, Payson H, Berry S, Vornehm J, Finnemeyer V, Roberts B, Bos P. High-efficiency large-angle pancharatnam phase deflector based on dual-twist design. Optics Express, 2017, 25(6): 6283-6293 DOI:10.1364/OE.25.006283

47. Xiang X, Kim J, Komanduri R, Escuti M J. Nanoscale liquid crystal polymer Bragg polarization gratings. Optics Express, 2017, 25(16): 19298-19308 DOI:10.1364/OE.25.019298

48. Kobashi J, Yoshida H, Ozaki M. Planar optics with patterned chiral liquid crystals. Nature Photonics, 2016(10): 389 DOI:10.1038/nphoton.2016.66

49. Kobashi J, Mohri Y, Yoshida H, Ozaki M. Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals. Optical Data Processing and Storage, 2017, 3(1): 61–66 DOI:10.1515/odps-2017-0008

50. Lee Y H, Yin K, Wu S T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays. Optics Express, 2017, 25 (22): 27008–27014 DOI:10.1364/OE.25.027008

51. Lee Y H, Tan G, Zhan T, Weng Y, Liu G, Gou F, Peng F, Tabiryan N V, Gauza S, Wu S T. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities. Optical Data Processing and Storage, 2017, 3(1): 79–88 DOI:10.1515/odps-2017-0010

52. Sakhno O, Gritsai Y, Sahm H, Stumpe J. Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer. Applied Physics B, 2018, 124(3): 52 DOI:10.1007/s0034

53. Äyräs P, Saarikko P. Near-to-eye display based on retinal scanning and a diffractive exit-pupil expander. In: Optics, Photonics, and Digital Technologies for Multimedia Applications. International Society for Optics and Photonics, 2010, 77230V

54. Pasi L, Nicolas P, Jari T. Diffractive optics for mobile solutions: light incoupling and polarization control with light guides. Japanese Journal of Applied Physics, 2008, 47(8S1): 6635

55. Shi Z, Chen W T, Capasso F. Wide field-of-view waveguide displays enabled by polarization-dependent metagratings. In: Digital Optics for Immersive Displays. International Society for Optics and Photonics, 2018, 1067615. DOI:10.1117/12.2315635

56. Lee Y H, Tan G, Yin K, Zhan T, Wu S T. Compact see-through near-eye display with depth adaption. Journal of the Society for Information Display, 2018, 26(2): 64–70 DOI:10.1002/jsid.635

Related

1. Mengting XIAO, Zhiquan FENG, Xiaohui YANG, Tao XU, Qingbei GUO, Multimodal interaction design and application in augmented reality for chemical experiment Virtual Reality & Intelligent Hardware 2020, 2(4): 291-304

2. Yonghang TAI, Junsheng SHI, Junjun PAN, Aimin HAO, Victor CHANG, Augmented reality-based visual-haptic modeling for thoracoscopic surgery training systems Virtual Reality & Intelligent Hardware 2021, 3(4): 274-286

3. Mingxuan CHEN, Ping ZHANG, Zebo WU, Xiaodan CHEN, A multichannel human-swarm robot interaction system in augmented reality Virtual Reality & Intelligent Hardware 2020, 2(6): 518-533

4. Yukang YAN, Xin YI, Chun YU, Yuanchun SHI, Gesture-based target acquisition in virtual and augmented reality Virtual Reality & Intelligent Hardware 2019, 1(3): 276-289

5. Yuan GAO, Le XIE, A review on the application of augmented reality in craniomaxillofacial surgery Virtual Reality & Intelligent Hardware 2019, 1(1): 113-120

6. Jinyu LI, Bangbang YANG, Danpeng CHEN, Nan WANG, Guofeng ZHANG, Hujun BAO, Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality Virtual Reality & Intelligent Hardware 2019, 1(4): 386-410

7. Xiaomei ZHAO, Fulin TANG, Yihong WU, Real-time human segmentation by BowtieNet and a SLAM-based human AR system Virtual Reality & Intelligent Hardware 2019, 1(5): 511-524

8. Chan QIU, Shien ZHOU, Zhenyu LIU, Qi GAO, Jianrong TAN, Digital assembly technology based on augmented reality and digital twins: a review Virtual Reality & Intelligent Hardware 2019, 1(6): 597-610

9. Wang LI, Junfeng WANG, Sichen JIAO, Meng WANG, Shiqi LI, Research on the visual elements of augmented reality assembly processes Virtual Reality & Intelligent Hardware 2019, 1(6): 622-634

10. Pengfei HAN, Gang ZHAO, A review of edge-based 3D tracking of rigid objects Virtual Reality & Intelligent Hardware 2019, 1(6): 580-596

11. Shenze WANG, Kaikai DU, Ningfang SONG, Dongfeng ZHAO, Di FENG, Zhengqian TU, Study on the adaptability of augmented reality smartglasses for astigmatism based on holographic waveguide grating Virtual Reality & Intelligent Hardware 2020, 2(1): 79-85

12. Xiang ZHOU, Liyu TANG, Ding LIN, Wei HAN, Virtual & augmented reality for biological microscope in experiment education Virtual Reality & Intelligent Hardware 2020, 2(4): 316-329

13. Lingfei ZHU, Qi CAO, Yiyu CAI, Development of augmented reality serious games with a vibrotactile feedback jacket Virtual Reality & Intelligent Hardware 2020, 2(5): 454-470

14. Zike YAN, Hongbin ZHA, Flow-based SLAM: From geometry computation to learning Virtual Reality & Intelligent Hardware 2019, 1(5): 435-460