Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2019, 1(1): 10-20 Published Date:2019-2-20

DOI: 10.3724/SP.J.2096-5796.2018.0009

Prospects and challenges in augmented reality displays

Full Text: PDF (79) HTML (1091)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Augmented reality (AR) displays are attracting significant attention and efforts. In this paper, we review the adopted device configurations of see-through displays, summarize the current development status and highlight future challenges in micro-displays. A brief introduction to optical gratings is presented to help understand the challenging design of grating-based waveguide for AR displays. Finally, we discuss the most recent progress in diffraction grating and its implications.
Keywords: Near-eye displays ; See-through display ; Augmented reality ; Micro-displays ; Bragg gratings

Cite this article:

Yun-Han LEE, Tao ZHAN, Shin-Tson WU. Prospects and challenges in augmented reality displays. Virtual Reality & Intelligent Hardware, 2019, 1(1): 10-20 DOI:10.3724/SP.J.2096-5796.2018.0009

1. Cakmakci O, Rolland J. Head-worn displays: a review. Journal of Display Technology, 2006, 2(3): 199–216 DOI:10.1109/JDT.2006.879846

2. Cado H, Moliton R. Polarization splitter, method of manufacturing same and ophthalmic lens incorporating projection inserts containing it. U.S. Patent, 0136082.A1, 2004–7–15

3. Martinez M A, Saeedi E, Amirparviz B. Head-mounted display including integrated projector. U.S. Patent, 9128285.B2, 2005–9–8

4. Wang J, Liang Y, Xu M. Design of a see-through head-mounted display with a freeform surface. Journal of the Optical Society of Korea, 2015, 19(6): 614–618 DOI:10.3807/JOSK.2015.19.6.614

5. Pulli K. Meta 2: immersive optical‐see‐through augmented reality. IEEE SigPort, 2017, 48(1): 132–133

6. Takahashi K. Head or face mounted image display apparatus. U.S. Patent, 5701202, 1997–12–23

7. Yamazaki S, Inoguchi K, Saito Y, Morishima H, Taniguchi N. Thin wide-field-of-view HMD with free-form-surface prism and applications. Proc SPIE, 1999, 3639: 453–462 DOI:10.1117/12.349411

8. Cheng D, Wang Y, Chang J. Design of a lightweight and wide field-of-view HMD system with freeform surface prism. Infrared and Laser Engineering, 2007, 36 (3): 309–311

9. Cheng D, Wang Y, Hua H, Talha M M. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Applied Optics, 2009, 48(14): 2655–2668 DOI:10.1364/AO.48.002655

10. Amitai Y. A two‐dimensional aperture expander for ultra‐compact, high‐performance head‐worn displays. SID International Symposium Digest of Techninal Papers, 2005, 36(1): 360–363 DOI:10.1889/1.2036446

11. Amitai Y. Substrate-guided optical device utilizing thin transparent layer. U.S. Patent, 772443.B2, 2010–5–25

12. Cheng D, Wang Y, Xu C, Song W, Jin G. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Optics Express, 2014, 22(17): 20705–20719 DOI:10.1364/OE.22.020705

13. Wang Q, Cheng D, Hou Q, Hu Y, Wang Y. Stray light and tolerance analysis of an ultrathin waveguide display. Applied Optics, 2015, 54(28): 8354–8362 DOI:10.1364/AO.54.008354

14. Gu L, Cheng D, Wang Q, Hou Q, Wang Y. Design of a two-dimensional stray-light-free geometrical waveguide head-up display. Applied Optics, 2018, 57(31): 9246–9256 DOI:10.1364/AO.57.009246

15. Frommer A. Lumus optical technology for AR. SID International Symposium Digest of Techninal Papers , 2017, 48(1): 134–135 DOI:10.1002/sdtp.11589

16. Amitai Y, Reinhorn S, Friesem A A. Visor-display design based on planar holographic optics. Applied Optics, 1995, 34(8): 1352-1356 DOI:10.1364/AO.34.001352

17. Levola T. Diffractive optics for virtual reality displays. SID International Symposium Digest of Techninal Papers , 2006, 14(5): 467–475 DOI:10.1889/1.2206112

18. Mukawa H, Akutsu K, Matsumura I, Nakano S, Yoshida T, Kuwahara M, Aiki K. A full-color eyewear display using planar waveguides with reflection volume holograms. SID International Symposium Digest of Techninal Papers, 2009, 17(3): 185–193 DOI:10.1889/JSID17.3.185

19. Dobrowolski J A, Sullivan B T, Bajcar R C. Optical interference, contrast-enhanced electroluminescent device. Applied Optics, 1992, 31(28): 5988–5996 DOI:10.1364/AO.31.005988

20. Chen H, Tan G, Wu S T. Ambient contrast ratio of LCDs and OLED displays. Optics Express, 2017, 25(26): 33643–33656 DOI:10.1364/OE.25.033643

21. Handschy M A, McNeil J R, Weissman P E. Ultrabright head-mounted displays using LED-illuminated LCOS. In: Helmet-and Head-Mounted Displays XI: Technologies and Applications. International Society for Optics and Photonics, 2006, 62240S DOI:10.1117/12.668481

22. Huang Y, Liao E, Chen R, Wu S-T. Liquid-Crystal-on-Silicon for Augmented Reality Displays,2018, 8(12): 2366 DOI:10.3390/app8122366

23. Pettitt G, Ferri J, Thompson J. Practical application of TI DLP® technology in the next generation head-up display system. SID International Symposium Digest of Techninal Papers, 2015, 46(1): 700–703 DOI:10.1002/sdtp.10269

24. Haas G. Microdisplays for augmented and virtual reality. SID International Symposium Digest of Techninal Papers, 2018, 49(1): 506–509 DOI:10.1002/sdtp.12445

25. Ghosh A, Donoghue E P, Khayrullin I, Ali T, Wacyk l, Tice K, Vazan F, Prache O, Wang Q, Sziklas L, Fellowes D, Draper R. Ultra-High-Brightness 2K×2K full-color OLED microdisplay using direct patterning of OLED emitters. SID International Symposium Digest of Techninal Papers, 2017, 48(1): 226–229 DOI:10.1002/sdtp.11674

26. El-Ghoroury H S, ChuangC-L, Alpaslan Z Y. Quantum photonic imager (QPI): A novel display technology that enables more than 3D applications. SID International Symposium Digest of Techninal Papers, 2015, 46(1): 371–374 DOI:10.1002/sdtp.10255

27. Templier F. GaN‐based emissive microdisplays: A very promising technology for compact, ultra‐high brightness display systems. Journal of the Society for Information Display, 2016, 24(11): 669–675 DOI:10.1002/jsid.516

28. Zhang L, Ou F, Chong W C, Chen Y, Li Q. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers—A mass manufacturable approach for active matrix micro-LED micro-displays. Journal of the Society for Information Display, 2018, 26(3): 137–145 DOI:10.1002/jsid.649

29. Olivier F, Daami A, Dupré L, Henry F, Aventurier B, Templier F. 25-4: investigation and improvement of 10μm Pixel-pitch GaN-based Micro-LED arrays with very high brightness. SID International Symposium Digest of Techninal Papers, 2017, 48(1): 353–356 DOI:10.1002/sdtp.11615

30. Kress B C, Cummings W J. Towards the ultimate mixed reality experience: HoloLens display architecture choices. SID International Symposium Digest of Techninal Papers, 2017, 48 (1): 127–131 DOI:10.1002/sdtp.11586

31. Solymar L, Cooke D J. Volume Holography and Volume Gratings. Academic press, 1981

32. Gleeson M R, Sheridan J T. A review of the modelling of free-radical photopolymerization in the formation of holographic gratings. Journal of Optics A: Pure and Applied Optics, 2009, 11(2): 24008 DOI:10.1088/1464-4258/11/2/024008

33. BruderF-K, Fäcke T, Hagen R, Hönel D, Orselli E, Rewitz C, Rölle T, Walze G. Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film. In: Optical Systems Design 2015: Optical Design and Engineering VI. International Society for Optics and Photonics, 2015, 96260T DOI: 10.1117/12.2191587

34. Rasmussen T. Overview of high-efficiency transmission gratings for molecular spectroscopy. Spectroscopy, 2014, 29(4): 32–39

35. Sutherland R L, Natarajan L V, Tondiglia V P, Bunning T J. Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes. Chemistry of Materials, 1993, 5(10): 1533–1538 DOI:10.1021/cm00034a025

36. Sutherland R L, Tondiglia V P, Natarajan L V, Bunning T J, Adams W W. Electrically switchable volume gratings in polymer‐dispersed liquid crystals. Applied Physics Letters, 1994, 64(9): 1074–1076 DOI:10.1063/1.110936

37. Sutherland R L. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model. Journal of the Optical Society of America B, 2002, 19(12): 2995–3003 DOI:10.1364/JOSAB.19.002995

38. Liu Y J, Sun X W. Holographic polymer-dispersed liquid crystals materials, formation, and applications. Advances in OptoElectronics, 2008, 1: 684349 DOI:10.1155/2008/684349

39. Waldern J D, Grant A J, Popovich M M. DigiLens AR HUD waveguide technology. SID International Symposium Digest of Techninal Papers, 2018, 49 (1): 204–207 DOI:10.1002/sdtp.12523

40. Moharam M G, Pommet D A, Grann E B, Gaylord T K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. Journal of the Optical Society of America A, 1995, 12(5): 1077–1086 DOI:10.1364/JOSAA.12.001077

41. Levola T, Laakkonen P. Replicated slanted gratings with a high refractive index material for in and outcoupling of light. Optics Express, 2007, 15(5): 2067–2074 DOI:10.1364/OE.15.002067

42. Laakkonen P, Siitonen S, Levola T, Kuittinen M. High efficiency diffractive incouplers for light guides. In: Integrated Optics: Devices, Materials, and Technologies XII. International Society for Optics and Photonics, 2008, 68960E DOI:10.1117/12.768666

43. Äyräs P, Saarikko P, Levola T. Exit-pupil expander with a large field of view based on diffractive optics. Journal of the Society for Information Display, 2009, 17(8): 659–664 DOI:10.1889/JSID17.8.659

44. Bai B, Laukkanen J, Kuittinen M, Siitonen S. Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides. Applied Optics, 2010, 49(28): 5454–5464 DOI:10.1364/AO.49.005454

45. Weng Y, Xu D, Zhang Y, Li X, Wu S-T. Polarization volume grating with high efficiency and large diffraction angle. Optics Express, 2016, 24(16): 17746–17759 DOI:10.1364/OE.24.017746

46. Gao K, McGinty C, Payson H, Berry S, Vornehm J, Finnemeyer V, Roberts B, Bos P. High-efficiency large-angle pancharatnam phase deflector based on dual-twist design. Optics Express, 2017, 25(6): 6283-6293 DOI:10.1364/OE.25.006283

47. Xiang X, Kim J, Komanduri R, Escuti M J. Nanoscale liquid crystal polymer Bragg polarization gratings. Optics Express, 2017, 25(16): 19298-19308 DOI:10.1364/OE.25.019298

48. Kobashi J, Yoshida H, Ozaki M. Planar optics with patterned chiral liquid crystals. Nature Photonics, 2016(10): 389 DOI:10.1038/nphoton.2016.66

49. Kobashi J, Mohri Y, Yoshida H, Ozaki M. Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals. Optical Data Processing and Storage, 2017, 3(1): 61–66 DOI:10.1515/odps-2017-0008

50. Lee Y H, Yin K, Wu S T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays. Optics Express, 2017, 25 (22): 27008–27014 DOI:10.1364/OE.25.027008

51. Lee Y H, Tan G, Zhan T, Weng Y, Liu G, Gou F, Peng F, Tabiryan N V, Gauza S, Wu S T. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities. Optical Data Processing and Storage, 2017, 3(1): 79–88 DOI:10.1515/odps-2017-0010

52. Sakhno O, Gritsai Y, Sahm H, Stumpe J. Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer. Applied Physics B, 2018, 124(3): 52 DOI:10.1007/s0034

53. Äyräs P, Saarikko P. Near-to-eye display based on retinal scanning and a diffractive exit-pupil expander. In: Optics, Photonics, and Digital Technologies for Multimedia Applications. International Society for Optics and Photonics, 2010, 77230V

54. Pasi L, Nicolas P, Jari T. Diffractive optics for mobile solutions: light incoupling and polarization control with light guides. Japanese Journal of Applied Physics, 2008, 47(8S1): 6635

55. Shi Z, Chen W T, Capasso F. Wide field-of-view waveguide displays enabled by polarization-dependent metagratings. In: Digital Optics for Immersive Displays. International Society for Optics and Photonics, 2018, 1067615. DOI:10.1117/12.2315635

56. Lee Y H, Tan G, Yin K, Zhan T, Wu S T. Compact see-through near-eye display with depth adaption. Journal of the Society for Information Display, 2018, 26(2): 64–70 DOI:10.1002/jsid.635

email E-mail this page

Articles by authors

VRIH