Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2022, 4(3): 247-262

Published Date:2022-6-20 DOI: 10.1016/j.vrih.2022.05.001

Deepdive: a learning-based approach for virtual camera in immersive contents

Abstract

A 360° video stream provide users a choice of viewing one's own point of interest inside the immersive contents. Performing head or hand manipulations to view the interesting scene in a 360° video is very tedious and the user may view the interested frame during his head/hand movement or even lose it. While automatically extracting user's point of interest (UPI) in a 360° video is very challenging because of subjectivity and difference of comforts. To handle these challenges and provide user's the best and visually pleasant view, we propose an automatic approach by utilizing two CNN models: object detector and aesthetic score of the scene. The proposed framework is three folded: pre-processing, Deepdive architecture, and view selection pipeline. In first fold, an input 360° video-frame is divided into three sub-frames, each one with 120° view. In second fold, each sub-frame is passed through CNN models to extract visual features in the sub-frames and calculate aesthetic score. Finally, decision pipeline selects the sub-frame with salient object based on the detected object and calculated aesthetic score. As compared to other state-of-the-art techniques which are domain specific approaches i.e., support sports 360° video, our system support most of the 360° videos genre. Performance evaluation of proposed framework on our own collected data from various websites indicate performance for different categories of 360° videos.

Keyword

Virtual reality ; Immersive contents ; Deep learning ; Aesthetic ; Saliency

Cite this article

Muhammad IRFAN, Muhammad MUNSIF. Deepdive: a learning-based approach for virtual camera in immersive contents. Virtual Reality & Intelligent Hardware, 2022, 4(3): 247-262 DOI:10.1016/j.vrih.2022.05.001

References

1. Khan N, Muhammad K, Hussain T, Nasir M, Munsif M, Imran A S, Sajjad M. An adaptive game-based learning strategy for children road safety education and practice in virtual space. Sensors, 2021, 21(11): 3661 DOI:10.3390/s21113661

2. Muhammad K, Hussain T, Baik S W. Efficient CNN based summarization of surveillance videos for resource-constrained devices. Pattern Recognition Letters, 2020, 130: 370–375 DOI:10.1016/j.patrec.2018.08.003

3. Mehmood I, Sajjad M, Baik S W. Video summarization based tele-endoscopy: a service to efficiently manage visual data generated during wireless capsule endoscopy procedure. Journal of Medical Systems, 2014, 38(9): 1–9 DOI:10.1007/s10916-014-0109-y

4. Muhammad K, Ahmad J, Sajjad M, Baik S W. Visual saliency models for summarization of diagnostic hysteroscopy videos in healthcare systems. SpringerPlus, 2016, 5(1): 1495 DOI:10.1186/s40064-016-3171-8

5. Haq I U, Muhammad K, Ullah A, Baik S W. DeepStar: detecting starring characters in movies. IEEE Access, 2019, 7: 9265–9272 DOI:10.1109/access.2018.2890560

6. Liu D, Hua G, Chen T. A hierarchical visual model for video object summarization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2178–2190 DOI:10.1109/tpami.2010.31

7. Khosla A, Hamid R, Lin C J, Sundaresan N. Large-scale video summarization using web-image priors. 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013, 2698–2705 DOI:10.1109/cvpr.2013.348

8. Potapov D, Douze M, Harchaoui Z, Schmid C. Category-specific video summarization. In: Computer Vision–ECCV 2014. Cham, Springer International Publishing, 2014, 540–555

9. Sun M, Farhadi A, Seitz S. Ranking domain-specific highlights by analyzing edited videos. In: Computer Vision–ECCV 2014., Cham, Springer International Publishing, 2014, 787–802

10. Yao T, Mei T, Rui Y. Highlight detection with pairwise deep ranking for first-person video summarization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 982–990 DOI:10.1109/cvpr.2016.112

11. Zhao B, Xing E P. Quasi real-time summarization for consumer videos. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, IEEE, 2014, 2513–2520 DOI:10.1109/cvpr.2014.322

12. Gong B Q, Chao W L, Grauman K, Sha F. Diverse sequential subset selection for supervised video summarization. Advances in Neural Information Processing Systems, 2014, 3: 2069–2077

13. Zhang K, Chao W L, Sha F, Grauman K. Summary transfer: exemplar-based subset selection for video summarization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, IEEE, 2016, 1059–1067 DOI:10.1109/cvpr.2016.120

14. Zhang K, Chao W-L, Sha F, Grauman K. Video summarization with long short-term memory. In: Computer Vision–ECCV 2016. Cham, Springer International Publishing, 2016, 766–782

15. Lee Y J, Ghosh J, Grauman K. Discovering important people and objects for egocentric video summarization. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, IEEE, 2012, 1346–1353 DOI:10.1109/cvpr.2012.6247820

16. Lu Z, Grauman K. Story-driven summarization for egocentric video. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA, IEEE, 2013, 2714–2721 DOI:10.1109/cvpr.2013.350

17. Perazzi F, Krähenbühl P, Pritch Y, Hornung A. Saliency filters: contrast based filtering for salient region detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, IEEE, 2012, 733–740 DOI:10.1109/cvpr.2012.6247743

18. Wang J W, Borji A, Jay Kuo C C, Itti L. Learning a combined model of visual saliency for fixation prediction. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2016, 25(4): 1566–1579 DOI:10.1109/tip.2016.2522380

19. Su Y C, Jayaraman D, Grauman K. Pano2Vid: automatic cinematography for watching 360° videos. 2016

20. Lin Y C, Chang Y J, Hu H N, Cheng H T, Huang C W, Sun M. Tell me where to look: investigating ways for assisting focus in 360° video. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver Colorado USA, New York, NY, USA, ACM, 2017, 2535–2545 DOI:10.1145/3025453.3025757

21. Ullah H, Muhammad K, Irfan M, Anwar S, Sajjad M, Imran A S, de Albuquerque V H C. Light-DehazeNet: a novel lightweight CNN architecture for single image dehazing. IEEE Transactions on Image Processing, 2021, 30: 8968–8982 DOI:10.1109/tip.2021.3116790

22. Ullah H, Irfan M, Han K, Lee J W. DLNR-SIQA: deep learning-based no-reference stitched image quality assessment. Sensors, 2020, 20(22): 6457 DOI:10.3390/s20226457

23. Sajjad M, Irfan M, Muhammad K, Ser J D, Sanchez-Medina J, Andreev S, Ding W P, Lee J W. An efficient and scalable simulation model for autonomous vehicles with economical hardware. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1718–1732 DOI:10.1109/tits.2020.2980855

24. Kim H G, Baddar W J, Lim H T, Jeong H, Ro Y M. Measurement of exceptional motion in VR video contents for VR sickness assessment using deep convolutional autoencoder. VRST '17: Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology. 2017, 1–7 DOI:10.1145/3139131.3139137

25. Cheng H T, Chao C H, Dong J D, Wen H K, Liu T L, Sun M. Cube padding for weakly-supervised saliency prediction in 360° videos. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 1420–1429 DOI:10.1109/cvpr.2018.00154

26. Su Y C, Grauman K. Making 360° video watchable in 2D: learning videography for click free viewing. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, IEEE, 2017, 1368–1376 DOI:10.1109/cvpr.2017.150

27. Li G B, Yu Y Z. Visual saliency based on multiscale deep features. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 5455–5463 DOI:10.1109/cvpr.2015.7299184

28. Yu Y L, Gu J, Mann G K I, Gosine R G. Development and evaluation of object-based visual attention for automatic perception of robots. IEEE Transactions on Automation Science and Engineering, 2013, 10(2): 365–379 DOI:10.1109/tase.2012.2214772

29. Bansal A, Ma S, Ramanan D, Sheikh Y. Recycle-GAN: Unsupervised Video Retargeting. 2018

30. Li B, Lin C W, Shi B X, Huang T J, Gao W, Kuo C C J. Depth-aware stereo video retargeting. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 6517–6525 DOI:10.1109/cvpr.2018.00682

31. Lei J, Luan Q, Song X H, Liu X, Tao D P, Song M L. Action parsing-driven video summarization based on reinforcement learning. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(7): 2126–2137 DOI:10.1109/tcsvt.2018.2860797

32. Sitzmann V, Serrano A, Pavel A, Agrawala M, Gutierrez D, Masia B, Wetzstein G. How do people explore virtual environments? 2016

33. Rai Y, Gutiérrez J, le Callet P. A dataset of head and eye movements for 360 degree images. MMSys'17: Proceedings of the 8th ACM on Multimedia Systems Conference. 2017, 205–210

34. Jiang H Z, Wang J D, Yuan Z J, Wu Y, Zheng N N, Li S P. Salient object detection: a discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA, IEEE, 2013, 2083–2090 DOI:10.1109/cvpr.2013.271

35. Tong N, Lu H C, Ruan X, Yang M H. Salient object detection via bootstrap learning. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, IEEE, 2015, 1884–1892 DOI:10.1109/cvpr.2015.7298798

36. Li G B, Yu Y Z. Deep contrast learning for salient object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, IEEE, 2016, 478–487 DOI:10.1109/cvpr.2016.58

37. Wang L J, Lu H C, Wang Y F, Feng M Y, Wang D, Yin B C, Ruan X. Learning to detect salient objects with image-level supervision. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, IEEE, 2017, 3796–3805 DOI:10.1109/cvpr.2017.404

38. Zhang X N, Wang T T, Qi J Q, Lu H C, Wang G. Progressive attention guided recurrent network for salient object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 714–722 DOI:10.1109/cvpr.2018.00081

39. Wang W G, Shen J B, Dong X P, Borji A, Yang R G. Inferring salient objects from human fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 1913–1927 DOI:10.1109/tpami.2019.2905607

40. Lin S S, Lin C H, Yeh I C, Chang S H, Yeh C K, Lee T Y. Content-aware video retargeting using object-preserving warping. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10): 1677–1686 DOI:10.1109/tvcg.2013.75

41. Zhang J Y, Li S W, Kuo C C J. Compressed-domain video retargeting. IEEE Transactions on Image Processing, 2014, 23(2): 797–809 DOI:10.1109/tip.2013.2294541

42. Li B, Duan L Y, Wang J Q, Ji R R, Lin C W, Gao W. Spatiotemporal grid flow for video retargeting. IEEE Transactions on Image Processing, 2014, 23(4): 1615–1628 DOI:10.1109/tip.2014.2305843

43. Kim D, Woo S, Lee J Y, Kweon I S. Deep video inpainting. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 5785–5794 DOI:10.1109/cvpr.2019.00594

44. Khan S, Muhammad K, Mumtaz S, Baik S W, de Albuquerque V H C. Energy-efficient deep CNN for smoke detection in foggy IoT environment. IEEE Internet of Things Journal, 2019, 6(6): 9237–9245 DOI:10.1109/jiot.2019.2896120

45. Sajjad M, Khan S, Muhammad K, Wu W Q, Ullah A, Baik S W. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Journal of Computational Science, 2019, 30: 174–182 DOI:10.1016/j.jocs.2018.12.003

46. Hussain T, Muhammad K, Ser J D, Baik S W, de Albuquerque V H C. Intelligent embedded vision for summarization of multiview videos in IIoT. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2592–2602 DOI:10.1109/tii.2019.2937905

47. Thomas S S, Gupta S, Subramanian V K. Perceptual video summarization—A new framework for video summarization. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(8): 1790–1802 DOI:10.1109/tcsvt.2016.2556558

48. Zhang Y, Zimmermann R. Efficient summarization from multiple georeferenced user-generated videos. IEEE Transactions on Multimedia, 2016, 18(3): 418–431 DOI:10.1109/tmm.2016.2520827

49. Drakopoulos P, Koulieris G A, Mania K. Eye tracking interaction on unmodified mobile VR headsets using the selfie camera. ACM Transactions on Applied Perception, 2021, 18(3): 1–20 DOI:10.1145/3456875

50. Hu H N, Lin Y C, Liu M Y, Cheng H T, Chang Y J, Sun M. Deep 360 pilot: learning a deep agent for piloting through 360° sports videos. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, IEEE, 2017, 1396–1405 DOI:10.1109/cvpr.2017.153

51. Xu Y Y, Dong Y B, Wu J R, Sun Z Z, Shi Z R, Yu J Y, Gao S H. Gaze prediction in dynamic 360° immersive videos. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 5333–5342 DOI:10.1109/cvpr.2018.00559

52. Chen X W, Kasgari A T Z, Saad W. Deep learning for content-based personalized viewport prediction of 360-degree VR videos. IEEE Networking Letters, 2020, 2(2): 81–84 DOI:10.1109/lnet.2020.2977124

53. Li C, Xu M, Jiang L, Zhang S Y, Tao X M. Viewport proposal CNN for 360° video quality assessment. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 10169–10178 DOI:10.1109/cvpr.2019.01042

54. Hosu V, Goldlücke B, Saupe D. Effective aesthetics prediction with multi-level spatially pooled features. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 9367–9375 DOI:10.1109/cvpr.2019.00960

Related

1. Hayat ULLAH, Sitara AFZAL, Imran Ullah KHAN, Perceptual quality assessment of panoramic stitched contents for immersive applications: a prospective survey Virtual Reality & Intelligent Hardware 2022, 4(3): 223-246

2. Lianyu ZHENG, Xinyu LIU, Zewu AN, Shufei LI, Renjie ZHANG, A smart assistance system for cable assembly by combining wearable augmented reality with portable visual inspection Virtual Reality & Intelligent Hardware 2020, 2(1): 12-27

3. Zhiyuan ZHANG, Yuchao DAI, Jiadai SUN, Deep learning based point cloud registration: an overview Virtual Reality & Intelligent Hardware 2020, 2(3): 222-246

4. Zike YAN, Hongbin ZHA, Flow-based SLAM: From geometry computation to learning Virtual Reality & Intelligent Hardware 2019, 1(5): 435-460

5. Yuanyuan SHI, Yunan LI, Xiaolong FU, Kaibin MIAO, Qiguang MIAO, Review of dynamic gesture recognition Virtual Reality & Intelligent Hardware 2021, 3(3): 183-206

6. Xiaojiao SONG, Jianjun ZHU, Jingfan FAN, Danni AI, Jian YANG, Topological distance-constrained feature descriptor learning model for vessel matching in coronary angiographies Virtual Reality & Intelligent Hardware 2021, 3(4): 287-301

7. Rafik HAMZA, Minh-Son DAO, Privacy-preserving deep learning techniques for wearable sensor-based big data applications Virtual Reality & Intelligent Hardware 2022, 4(3): 210-222

8. Wei LYU, Zhong ZHOU, Lang CHEN, Yi ZHOU, A survey on image and video stitching Virtual Reality & Intelligent Hardware 2019, 1(1): 55-83

9. Yan ZHANG, Guangzheng FEI, Overview of 3D Scene Viewpoints evaluation method Virtual Reality & Intelligent Hardware 2019, 1(4): 341-385

10. Yang LI, Dong WU, Jin HUANG, Feng TIAN, Hong'an WANG, Guozhong DAI, Influence of multi-modality on moving target selection in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(3): 303-315

11. Yang LI, Jin HUANG, Feng TIAN, Hong-An WANG, Guo-Zhong DAI, Gesture interaction in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(1): 84-112

12. Athirah SYAMIMI, Yiwei GONG, Ryan LIEW, VR industrial applicationsA singapore perspective Virtual Reality & Intelligent Hardware 2020, 2(5): 409-420

13. Jie GUO, Dongdong WENG, Yue LIU, Qiyong CHEN, Yongtian WANG, Analysis of teenagers' preferences and concerns regarding HMDs in education Virtual Reality & Intelligent Hardware 2021, 3(5): 369-382

14. Yijun LI, Miao WANG, Derong JIN, Frank STEINICKE, Qinping ZHAO, Effects of virtual environment and self-representations on perception and physical performance in redirected jumping Virtual Reality & Intelligent Hardware 2021, 3(6): 451-469

15. Susu HUANG, Daqing QI, Jiabin YUAN, Huawei TU, Review of studies on target acquisition in virtual reality based on the crossing paradigm Virtual Reality & Intelligent Hardware 2019, 1(3): 251-264

16. Yukang YAN, Xin YI, Chun YU, Yuanchun SHI, Gesture-based target acquisition in virtual and augmented reality Virtual Reality & Intelligent Hardware 2019, 1(3): 276-289

17. Yuan GAO, Le XIE, A review on the application of augmented reality in craniomaxillofacial surgery Virtual Reality & Intelligent Hardware 2019, 1(1): 113-120

18. Yuan CHANG, Guo-Ping WANG, A review on image-based rendering Virtual Reality & Intelligent Hardware 2019, 1(1): 39-54

19. Shiguang QIU, Shuntao LIU, Deshuai KONG, Qichang HE, Three-dimensional virtual-real mapping of aircraft autom-atic spray operation and online simulation monitoring Virtual Reality & Intelligent Hardware 2019, 1(6): 611-621

20. Xu PENG, Zhenyu GAO, Yitong DING, Dongfeng ZHAO, Xiaoyu CHI, Study of ghost image suppression in polarized catadioptric virtual reality optical systems Virtual Reality & Intelligent Hardware 2020, 2(1): 70-78

21. Zhiming HU, Sheng LI, Meng GAI, Temporal continuity of visual attention for future gaze prediction in immersive virtual reality Virtual Reality & Intelligent Hardware 2020, 2(2): 142-152

22. Lihui HUANG, Siti Faatihah Binte Mohd TAIB, Ryan Aung BA, Zhe An GOH, Mengshan XU, Virtual reality research and development in NTU Virtual Reality & Intelligent Hardware 2020, 2(5): 394-408

23. Stéphanie PHILIPPE, Alexis D. SOUCHET, Petros LAMERAS, Panagiotis PETRIDIS, Julien CAPORAL, Gildas COLDEBOEUF, Hadrien DUZAN, Multimodal teaching, learning and training in virtual reality: a review and case study Virtual Reality & Intelligent Hardware 2020, 2(5): 421-442

24. Jia Ming LEE, Xinxing XIA, Clemen OW, Felix CHUA, Yunqing GUAN, VEGO: A novel design towards customizable and adjustable head-mounted display for VR Virtual Reality & Intelligent Hardware 2020, 2(5): 443-453

25. Jingcheng QIAN, Yancong MA, Zhigeng PAN, Xubo YANG, Effects of Virtual-real fusion on immersion, presence, and learning performance in laboratory education Virtual Reality & Intelligent Hardware 2020, 2(6): 569-584

26. Hengwei XU, Siru LI, Wenpeng SONG, Jiajun SUN, Xinli WU, Xiaoqi WANG, Wenzhen YANG, Zhigeng PAN, Abdennour EI RHALIBI, Thermal perception method of virtual chemistry experiments Virtual Reality & Intelligent Hardware 2020, 2(4): 305-315

27. TJ MATTHEWS, Feng TIAN, Tom DOLBY, Interaction design for paediatric emergency VR training Virtual Reality & Intelligent Hardware 2020, 2(4): 330-344

28. Hongxin ZHANG, Jin ZHANG, Xue YIN, Kan ZHOU, Zhigeng PAN, Abdennour EI RHALIBI, Cloud-to-end rendering and storage management for virtual reality in experimental education Virtual Reality & Intelligent Hardware 2020, 2(4): 368-380

29. Xiang ZHOU, Liyu TANG, Ding LIN, Wei HAN, Virtual & augmented reality for biological microscope in experiment education Virtual Reality & Intelligent Hardware 2020, 2(4): 316-329

30. Haoyu WANG, Jianhuang WU, A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction Virtual Reality & Intelligent Hardware 2021, 3(4): 302-314

31. Na ZHANG, Liwen TAN, Fengying LI, Bing HAN, Yifa XU, Development and application of digital assistive teaching system for anatomy Virtual Reality & Intelligent Hardware 2021, 3(4): 315-335

32. Daniel VANKOV, David JANKOVSZKY, Effects of using headset-delivered virtual reality in road safety research: A systematic review of empirical studies Virtual Reality & Intelligent Hardware 2021, 3(5): 351-368

33. Xiaolong LIU, Lili WANG, Redirected jumping in virtual scenes with alleys Virtual Reality & Intelligent Hardware 2021, 3(6): 470-483

34. Liming WANG, Xianwei CHEN, Tianyang DONG, Jing FAN, Virtual climbing: An immersive upslope walking system using passive haptics Virtual Reality & Intelligent Hardware 2021, 3(6): 435-450

35. Dangxiao WANG, Yuan GUO, Shiyi LIU, Yuru ZHANG, Weiliang XU, Jing XIAO, Haptic display for virtual reality: progress and challenges Virtual Reality & Intelligent Hardware 2019, 1(2): 136-162

36. Aiguo SONG, Liyue FU, Multi-dimensional force sensor for haptic interaction: a review Virtual Reality & Intelligent Hardware 2019, 1(2): 121-135

37. Wenmin ZHU, Xiumin FAN, Yanxin ZHANG, Applications and research trends of digital human models in the manufacturing industry Virtual Reality & Intelligent Hardware 2019, 1(6): 558-579

38. Mohammad Mahmudul ALAM, S. M. Mahbubur RAHMAN, Affine transformation of virtual 3D object using 2D localization of fingertips Virtual Reality & Intelligent Hardware 2020, 2(6): 534-555

39. Mohib ULLAH, Sareer Ul AMIN, Muhammad MUNSIF, Muhammad Mudassar YAMIN, Utkurbek SAFAEV, Habib KHAN, Salman KHAN, Habib ULLAH, Serious games in science education: a systematic literature review Virtual Reality & Intelligent Hardware 2022, 4(3): 189-209

40. Yuan WEI, Dongdong GUAN, Qiuchen WANG, Xiangxian LI, Yulong BIAN, Pu QIN, Yanning XU, Chenglei YANG, Virtual fire drill system supporting co-located collaboration Virtual Reality & Intelligent Hardware 2019, 1(3): 290-302