Privacy-preserving deep learning techniques for wearable sensor-based big data applications
Integrated Big Data Research Center | NICT-National Institute of Information and Communications Technology, Tokyo, Japan
Abstract
Keywords: Wearable technology ; Augmented reality ; Privacy-preserving ; Deep learning ; Big data ; Secure prediction service
Content






Reference
Onday O. Japan's society 5.0: Going beyond industry 4.0. Business and Economics Journal, 2019, 10(2):1–6 DOI:10.4172/2151-6219.1000389
Hamza R, Zettsu K. Investigation on privacy-preserving techniques for personal data. ICDAR'21: Proceedings of the 2021 Workshop on Intelligent Cross-Data Analysis and Retrieval. 2021, 62–66 DOI:10.1145/3463944.3469267
Gahi Y, Guennoun M, Mouftah H T. Big Data Analytics: security and privacy challenges. In: 2016 IEEE Symposium on Computers and Communication. Messina, Italy, IEEE, 2016, 952–957 DOI:10.1109/iscc.2016.7543859
Hamza R, Hassan A, Huang T, Ke L S, Yan H Y. An efficient cryptosystem for video surveillance in the Internet of Things environment. Complexity, 2019, 1625678 DOI:10.1155/2019/1625678
Jia B, Zhang X S, Liu J W, Zhang Y, Huang K, Liang Y Q. Blockchain-enabled federated learning data protection aggregation scheme with differential privacy and homomorphic encryption in IIoT. IEEE Transactions on Industrial Informatics, 5960, PP(99): 1 DOI:10.1109/tii.2021.3085960
Patil A S, Hamza R, Hassan A, Jiang N, Yan H Y, Li J. Efficient privacy-preserving authentication protocol using PUFs with blockchain smart contracts. Computers & Security, 2020, 97: 101958 DOI:10.1016/j.cose.2020.101958
Rafique A, van Landuyt D, Heydari Beni E, Lagaisse B, Joosen W. CryptDICE: Distributed data protection system for secure cloud data storage and computation. Information Systems, 2021, 96: 101671 DOI:10.1016/j.is.2020.101671
Dahl M, Mancuso J, Dupis Y, Decoste B, Giraud M, Livingstone I, Patriquin J, Uhma G. Private machine learning in tensorflow using secure computation. 2018
Wang M H, Zhu T Q, Zhang T, Zhang J, Yu S, Zhou W L. Security and privacy in 6G networks: new areas and new challenges. Digital Communications and Networks, 2020, 6(3): 281–291 DOI:10.1016/j.dcan.2020.07.003
Lebeck K, Ruth K, Kohno T, Roesner F. Towards security and privacy for multi-user augmented reality: foundations with end users. In: 2018 IEEE Symposium on Security and Privacy. San Francisco, CA, USA, IEEE, 2018, 392–408 DOI:10.1109/sp.2018.00051
Chen D W, Xie L J, Kim B, Wang L, Hong C S, Wang L C, Han Z. Federated learning based mobile edge computing for augmented reality applications. In: 2020 International Conference on Computing, Networking and Communications (ICNC). Big Island, HI, USA, IEEE, 2020,767–773 DOI:10.1109/icnc47757.2020.9049708
Syamimi A, Gong Y W, Liew R. VR industrial applications―A Singapore perspective. Virtual Reality & Intelligent Hardware, 2020, 2(5): 409–420 DOI:10.1016/j.vrih.2020.06.001
Zheng L Y, Liu X, An Z W, Li S F, Zhang R J. A smart assistance system for cable assembly by combining wearable augmented reality with portable visual inspection. Virtual Reality & Intelligent Hardware, 2020, 2(1): 12–27 DOI:10.1016/j.vrih.2019.12.002
González F C J, Villegas O O V, Ramírez D E T, Sánchez V G C, Domínguez H O. Smart multi-level tool for remote patient monitoring based on a wireless sensor network and mobile augmented reality. Sensors (Basel, Switzerland), 2014, 14(9): 17212–17234 DOI:10.3390/s140917212
Li Y, Zheng L, Wang X W. Flexible and wearable healthcare sensors for visual reality health-monitoring. Virtual Reality & Intelligent Hardware, 2019, 1(4): 411–427 DOI:10.1016/j.vrih.2019.08.001
Yin J H, Chng C B, Wong P M, Ho N, Chua M, Chui C K. VR and AR in human performance research―An NUS experience. Virtual Reality & Intelligent Hardware, 2020, 2(5): 381–393 DOI:10.1016/j.vrih.2020.07.009
Kim H, Kwon Y T, Lim H R, Kim J H, Kim Y S, Yeo W H. Recent advances in wearable sensors and integrated functional devices for virtual and augmented reality applications. Advanced Functional Materials, 2021, 31(39): 2005692 DOI:10.1002/adfm.202005692
Gulhane A, Vyas A, Mitra R, Oruche R, Hoefer G, Valluripally S, Calyam P, Hoque K A. Security, privacy and safety risk assessment for virtual reality learning environment applications. In: 2019 16th IEEE Annual Consumer Communications & Networking Conference. Las Vegas, NV, USA, IEEE, 2019,1–9 DOI:10.1109/ccnc.2019.8651847
Fun T S, Samsudin A. A survey of homomorphic encryption for outsourced big data computation. KSII Transactions on Internet and Information Systems, 2016, 10(8): 3826–3851 DOI:10.3837/tiis.2016.08.022
Gao W C, Yu W, Liang F, Hatcher W G, Lu C. Privacy-preserving auction for big data trading using homomorphic encryption. IEEE Transactions on Network Science and Engineering, 2020, 7(2): 776–791 DOI:10.1109/tnse.2018.2846736
Wang D, Guo B, Shen Y, Cheng S J, Lin Y H. A faster fully homomorphic encryption scheme in big data. In: 2017 IEEE 2nd International Conference on Big Data Analysis. Beijing, China, IEEE, 2017, 345–349 DOI:10.1109/icbda.2017.8078836
Aono Y, Hayashi T, Phong L T, Wang L H. Privacy-preserving logistic regression with distributed data sources via homomorphic encryption. IEICE Transactions on Information and Systems, 2016, E99.D(8): 2079–2089 DOI:10.1587/transinf.2015inp0020
Esperanca P, Aslett L, Holmes C. Encrypted accelerated least squares regression. Artificial Intelligence and Statistics. 2017
Yonetani R, Boddeti V N, Kitani K M, Sato Y. Privacy-preserving visual learning using doubly permuted homomorphic encryption. In: 2017 IEEE International Conference on Computer Vision. Venice, Italy, IEEE, 2017, 2059–2069 DOI:10.1109/iccv.2017.225
Fang H K, Qian Q. Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet, 2021, 13(4): 94 DOI:10.3390/fi13040094
Halevi S. Homomorphic encryption. In Tutorials on the Foundations of Cryptography. Springer, Cham, 2017, 219–276 DOI:10.1007/978-3-319-57048-8_5
Yagoub M A, Laouid A, Kazar O, Bounceur A, Euler R, AlShaikh M. An adaptive and efficient fully homomorphic encryption technique. ICFNDS'18: Proceedings of the 2nd International Conference on Future Networks and Distributed Systems. 2018, 1–6 DOI:10.1145/3231053.3231088
Yan X Y, Wu Q L, Sun Y M. A homomorphic encryption and privacy protection method based on blockchain and edge computing. Wireless Communications and Mobile Computing, 2020, 8832341 DOI:10.1155/2020/8832341
Iezzi M. Practical privacy-preserving data science with homomorphic encryption: an overview. In: 2020 IEEE International Conference on Big Data (Big Data). Atlanta, GA, USA, IEEE, 2020, 3979–3988 DOI:10.1109/bigdata50022.2020.9377989
Pramanik M I, Lau R Y K, Hossain M S, Rahoman M M, Debnath S K, Rashed M G, Uddin M Z. Privacy preserving big data analytics: a critical analysis of state-of-the-art. WIREs Data Mining and Knowledge Discovery, 2021, 11(1): e1387 DOI:10.1002/widm.1387
Tran H Y, Hu J K. Privacy-preserving big data analytics a comprehensive survey. Journal of Parallel and Distributed Computing, 2019, 134: 207–218 DOI:10.1016/j.jpdc.2019.08.007
Vijaya K A, Sujith M S, Sai K T, Rajesh G, Yashwanth D J S. Secure Multiparty computation enabled E-Healthcare system with Homomorphic encryption. IOP Conference Series: Materials Science and Engineering, 2020, 981(2): 022079 DOI:10.1088/1757-899x/981/2/022079
Li D, Liao X F, Xiang T, Wu J H, Le J Q. Privacy-preserving self-serviced medical diagnosis scheme based on secure multi-party computation. Computers & Security, 2020, 90: 101701 DOI:10.1016/j.cose.2019.101701
Hesamifard E, Takabi H, Ghasemi M. Deep neural networks classification over encrypted data. CODASPY'19: Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy. 2019, 97–108 DOI:10.1145/3292006.3300044
Podschwadt R, Takabi D. Classification of encrypted word embeddings using recurrent neural networks. 2020
Graepel T, Lauter K, Naehrig M. ML confidential: Machine learning on encrypted data. In International Conference on Information Security and Cryptology. Springer, Berlin, Heidelberg. 2012, 1–21 DOI:10.1007/978-3-642-37682-5_1
Li P, Li J, Huang Z G, Li T, Gao C Z, Yiu S M, Chen K. Multi-key privacy-preserving deep learning in cloud computing. Future Generation Computer Systems, 2017, 74: 76–85 DOI:10.1016/j.future.2017.02.006
Bost R, Popa R A, Tu S, Goldwasser S. Machine learning classification over encrypted data. In: Proceedings 2015 Network and Distributed System Security Symposium. San Diego, CA, Reston, VA: Internet Society, 2015 DOI:10.14722/ndss.2015.23241
Takabi D, Podschwadt R, Druce J, Wu C, Procopio K. Privacy preserving neural network inference on encrypted data with GPUs. 2019
Badawi A A, Hoang L, Mun C F, Laine K, Aung K M M. PrivFT: private and fast text classification with homomorphic encryption. IEEE Access, 2020, 8: 226544–226556 DOI:10.1109/access.2020.3045465
Jung W, Kim S, Ahn J H, Cheon J H, Lee Y. Over 100x faster bootstrapping in fully homomorphic encryption through memory-centric optimization with GPUs. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021, 114–148 DOI:10.46586/tches.v2021.i4.114-148
Hesamifard E, Takabi H, Ghasemi M. Cryptodl: Deep neural networks over encrypted data. 2017
Zhao Z P, Bao Z T, Zhang Z X, Cummins N, Sun S H, Wang H S, Tao J H, Schuller B W. Self-attention transfer networks for speech emotion recognition. Virtual Reality & Intelligent Hardware, 2021, 3(1): 43–54 DOI:10.1016/j.vrih.2020.12.002
Li M C, An L, Yu T, Wang Y G, Chen F, Liu Y B. Neural hand reconstruction using a single RGB image. Virtual Reality & Intelligent Hardware, 2020, 2(3): 276–289 DOI:10.1016/j.vrih.2020.05.001
Mishra P, Lehmkuhl R, Srinivasan A, Zheng W, Popa R A. Delphi: A cryptographic inference service for neural networks. In 29th Security Symposium Security. 2020, 2505–2522
Sarmah S S. An efficient IoT-based patient monitoring and heart disease prediction system using deep learning modified neural network. IEEE Access, 2020, 8: 135784–135797 DOI:10.1109/access.2020.3007561
Ge C P, Yin C C, Liu Z, Fang L M, Zhu J C, Ling H D. A privacy preserve big data analysis system for wearable wireless sensor network. Computers & Security, 2020, 96: 101887 DOI:10.1016/j.cose.2020.101887
Xu R H, Joshi J B D, Li C. CryptoNN: training neural networks over encrypted data. In: 2019 IEEE 39th International Conference on Distributed Computing Systems. Dallas, TX, USA, IEEE, 2019, 1199–1209 DOI:10.1109/icdcs.2019.00121
Abdalla M, Bourse F, De Caro A, Pointcheval D. Simple Functional Encryption Schemes for Inner Products. Berlin, Heidelberg, Springer Berlin Heidelberg, 2015, 733–751 DOI:10.1007/978-3-662-46447-2_33
Gilad-Bachrach R, Dowlin N, Laine K, Lauter K, Naehrig M, Wernsing J. CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy. In: Proceedings of the 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, Edited by Maria Florina B, Kilian Q W. PMLR 2016, 201–210
Bos J W, Lauter K E, Loftus J, Naehrig M. Improved security for a ring-based fully homomorphic encryption scheme. IACR Cryptology EPrint Archive, 2013, 75
Halevi S, Shoup V. Algorithms in HElib. Berlin, Heidelberg, Springer Berlin Heidelberg, 2014, 554–571 DOI:10.1007/978-3-662-44371-2_31
El Saj R, Sedgh Gooya E, Alfalou A, Khalil M. Privacy-preserving deep neural network methods: computational and perceptual methods—an overview. Electronics, 2021, 10(11): 1367 DOI:10.3390/electronics10111367
Alkhelaiwi M, Boulila W, Ahmad J, Koubaa A, Driss M. An efficient approach based on privacy-preserving deep learning for satellite image classification. Remote Sensing, 2021, 13(11): 2221 DOI:10.3390/rs13112221
Zhang Y S, Xiao X L, Yang L X, Xiang Y, Zhong S. Secure and efficient outsourcing of PCA-based face recognition. IEEE Transactions on Information Forensics and Security, 2020, 15: 1683–1695 DOI:10.1109/tifs.2019.2947872