Dynamic targets searching assistance based on virtual camera priority
1. State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
3. Department of Mathematics and Theories, Peng Cheng Laboratory, Shenzhen 518052, China
4. The Chinese University of Hong Kong, Shenzhen 999077, China
5. Shenzhen Research Institute of Big Data, Shenzhen 999077, China
Abstract
Keywords: Searching assistance ; Virtual environment ; Path guidance ; Redirection
Content









Scene | Condition |
TAR AVG± TAR SD |
(EC1-CCi(ECi))/CCi(ECi) | p | Cohen’s d | Effect size |
DPT AVG± DPT SD |
(CCi(ECi)-EC1)/CCi(ECi) | p | Cohen’s d | Effect size |
---|---|---|---|---|---|---|---|---|---|---|---|
Scene 1 | EC1 | 7.75±0.83 | ‒ | ‒ | ‒ | ‒ | 4.27±1.09 | ‒ | ‒ | ‒ | ‒ |
EC2 | 7.38±0.86 | ‒5.1% | 0.43 | 0.44 | S | 4.23±0.94 | ‒0.8% | 0.80 | 0.03 | VS | |
EC3 | 7.13±1.05 | 8.8% | 0.40 | 0.66 | M | 4.30±1.35 | 0.8% | 0.82 | 0.04 | VS | |
CC1 | 5.25±0.64 | 47.6% | <0.01* | 3.38 | H | 5.60±1.15 | 23.8% | <0.01* | 1.54 | VL | |
CC2 | 5.75±0.91 | 34.8% | <0.01* | 2.30 | H | 4.98±0.97 | 14.3% | 0.03* | 0.69 | M | |
CC3 | 5.75±1.74 | 34.8% | <0.01* | 1.47 | VL | 5.06±1.70 | 15.7% | 0.16 | 0.56 | M | |
Scene 2 | EC1 | 8.38±0.98 | ‒ | ‒ | ‒ | ‒ | 3.64±0.71 | ‒ | ‒ | ‒ | ‒ |
EC2 | 8.13±0.86 | 3.1% | 0.45 | 0.36 | S | 3.73±0.76 | 2.4% | 0.75 | 0.12 | VS | |
EC3 | 8.00±1.32 | 4.7% | 0.57 | 0.38 | S | 3.81±1.40 | 4.3% | 0.69 | 0.15 | VS | |
CC1 | 5.38±0.70 | 55.8% | <0.01* | 5.00 | H | 4.87±1.45 | 25.2% | 0.01* | 1.08 | L | |
CC2 | 6.00±1.32 | 39.6% | <0.01* | 2.38 | H | 4.56±1.75 | 20.2% | 0.02* | 0.69 | M | |
CC3 | 5.88±1.54 | 42.6% | <0.01* | 2.19 | H | 5.03±2.01 | 27.6% | 0.06 | 0.92 | L |
Scene | Condition |
RPT AVG± RPT SD |
(CCi(ECi)-EC1)/CCi(ECi) | p | Cohen’s d | Effect size |
DPR AVG± DPR SD |
(EC1-CCi(ECi))/CCi(ECi) | p | Cohen’s d | Effect size |
---|---|---|---|---|---|---|---|---|---|---|---|
Scene 1 | EC1 | 1.04±0.28 | ‒ | ‒ | ‒ | ‒ | 4.16±0.62 | ‒ | ‒ | ‒ | ‒ |
EC2 | 1.05±0.18 | 1.3% | 0.88 | 0.06 | VS | 4.19±0.71 | ‒0.7% | 0.96 | 0.05 | VS | |
EC3 | 1.05±0.27 | 1.4% | 0.78 | 0.07 | VS | 4.07±0.92 | 2.1% | 0.71 | 0.12 | S | |
CC1 | 1.52±0.46 | 31.6% | <0.01* | 1.25 | VL | 3.92±0.98 | 6.1% | 0.45 | 0.35 | S | |
CC2 | 1.30±0.22 | 20.3% | 0.01* | 1.23 | VL | 3.84±0.79 | 8.1% | 0.12 | 0.56 | M | |
CC3 | 1.23±0.35 | 15.6% | 0.04* | 0.60 | M | 4.08±1.02 | 1.9% | 0.52 | 0.09 | VS | |
Scene 2 | EC1 | 0.94±0.14 | ‒ | ‒ | ‒ | ‒ | 3.87±0.62 | ‒ | ‒ | ‒ | ‒ |
EC2 | 0.98±0.20 | 4.3% | 0.42 | 0.25 | S | 3.83±0.49 | 1.2% | 0.56 | 0.12 | VS | |
EC3 | 0.96±0.25 | 2.2% | 0.62 | 0.11 | VS | 3.96±0.76 | ‒2.3% | 0.88 | 0.10 | VS | |
CC1 | 1.38±0.28 | 32.3% | <0.01* | 2.76 | H | 3.46±0.66 | 11.9% | 0.35 | 0.67 | M | |
CC2 | 1.25±0.12 | 24.9% | <0.01* | 2.39 | H | 3.58±0.91 | 8.0% | 0.72 | 0.34 | S | |
CC3 | 1.39±0.50 | 32.8% | <0.01* | 1.05 | L | 3.71±0.61 | 4.4% | 0.57 | 0.31 | S |
Scene | Condition |
TLX AVG± TLX SD |
(CCi (ECi)-EC1) /CCi (ECi) |
p | Cohen’s d | Effect size | PRE AVG ± PRE SD | POST AVG ± POST SD | p |
---|---|---|---|---|---|---|---|---|---|
Scene 1 | EC1 | 28.02±11.97 | ‒ | ‒ | ‒ | ‒ | 3.06±3.22 | 3.70±3.86 | 0.21 |
EC2 | 29.13±13.64 | 3.8% | 0.78 | 0.09 | VS | 3.28±3.48 | 3.96±4.04 | 0.35 | |
EC3 | 30.75±13.34 | 8.9% | 0.47 | 0.22 | S | 3.10±3.82 | 4.12±4.82 | 0.51 | |
CC1 | 29.50±16.93 | 5.0% | 0.75 | 0.10 | VS | 3.52±4.34 | 5.48±5.34 | 0.36 | |
CC2 | 34.96±13.54 | 19.8% | 0.12 | 0.54 | M | 3.26±3.86 | 4.18±3.78 | 0.26 | |
CC3 | 41.23±14.50 | 32.0% | 0.02* | 1.07 | L | 4.18±4.78 | 7.18±6.24 | 0.71 | |
Scene 2 | EC1 | 26.65±10.21 | ‒ | ‒ | ‒ | ‒ | 2.88±3.58 | 3.66±4.18 | 0.26 |
EC2 | 28.00±9.65 | 4.8% | 0.65 | 0.10 | VS | 2.70±3.36 | 3.84±4.74 | 0.31 | |
EC3 | 29.88±15.56 | 10.8% | 0.27 | 0.33 | S | 3.04±3.06 | 4.30±5.22 | 0.35 | |
CC1 | 27.88±14.36 | 4.4% | 0.42 | 0.09 | VS | 3.18±4.18 | 4.86±4.26 | 0.42 | |
CC2 | 30.46±13.37 | 12.5% | 0.37 | 0.32 | S | 2.50±3.06 | 4.10±3.98 | 0.38 | |
CC3 | 39.23±15.86 | 32.1% | 0.01* | 0.94 | L | 3.64±3.88 | 6.20±5.76 | 0.52 |
Reference
Kruijff E. 3D user interfaces: theory and practice. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(4): 565–572
Lynch K. Reconsidering the image of the City. In: Cities of the Mind. Boston, MA: Springer US, 1984, 151–161 DOI:10.1007/978-1-4757-9697-1_9
Chen C H, Chen M X. Wayfinding in virtual environments with landmarks on overview maps. Interacting with Computers, 2020, 32(3): 316–329 DOI:10.1093/iwc/iwaa022
Keil J, Edler D, Kuchinke L, Dickmann F. Effects of visual map complexity on the attentional processing of landmarks. PLoS One, 2020, 15(3): e0229575 DOI:10.1371/journal.pone.0229575
Danyluk K, Ens B, Jenny B, Willett W. A design space exploration of worlds in miniature. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Yokohama Japan, New York, NY, USA, ACM, 2021, 1–15 DOI:10.1145/3411764.3445098
Zhao H T, Thrash T, Grossrieder A, Kapadia M, Moussaïd M, Hölscher C, Schinazi V R. The interaction between map complexity and crowd movement on navigation decisions in virtual reality. Royal Society Open Science, 2020, 7(3): 191523 DOI:10.1098/rsos.191523
Darken R P, Sibert J L. A toolset for navigation in virtual environments. In: Proceedings of the 6th annual ACM Symposium on User Interface Software and Technology. 1993, 157–165 DOI:10.1145/168642.168658
Grammenos D, Filou M, Papadakos P, Stephanidis C. Virtual prints: leaving trails in virtual environments. EGVE, 2002, 2, 131–138
Freitag S, Weyers B, Kuhlen T W. Interactive exploration assistance for immersive virtual environments based on object visibility and viewpoint quality. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Tuebingen/Reutlingen, Germany, IEEE, 2018, 355–362 DOI:10.1109/vr.2018.8447553
Wu F, Thomas J, Chinnola S, Rosenberg E S. Exploring communication modalities to support collaborative guidance in virtual reality. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). Atlanta, GA, USA, IEEE, 2020, 79–86 DOI:10.1109/vrw50115.2020.00021
Darken R P, Peterson B. Spatial orientation, wayfinding, and representation. Handbook of virtual environments. CRC Press, 2002, 533–558
Sun J, Stuerzlinger W. Selecting and sliding hidden objects in 3D desktop environments. Graphics Interface, 2019, 8, 1–8
Bonn, Germany, IEEE, 2005, 115–122 DOI:10.1109/vr.2005.1492761
Freitag S, Löbbert C, Weyers B, Kuhlen T W. Approximating optimal sets of views in virtual scenes. In: 2017 IEEE Virtual Reality (VR). Los Angeles, CA, USA, IEEE, 2017, 311–312 DOI:10.1109/vr.2017.7892301
Freitag S, Weyers B, Kuhlen T W. Efficient approximate computation of scene visibility based on navigation meshes and applications for navigation and scene analysis. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI). Los Angeles, CA, USA, IEEE, 2017, 134–143 DOI:10.1109/3dui.2017.7893330
Neuville R, Pouliot J, Poux F, Billen R. 3D viewpoint management and navigation in urban planning: application to the exploratory phase. Remote Sensing, 2019, 11(3), 236 DOI:10.3390/rs11030236
Zhang Y, Fei G Z, Yang G. 3D viewpoint estimation based on aesthetics. IEEE Access, 2020, 8, 108602–108621 DOI:10.1109/access.2020.3001230
Dutagaci H, Cheung C P, Godil A. A benchmark for best view selection of 3D objects. In: Proceedings of the ACM Workshop on 3D Object Retrieva. Firenze, Italy, New York, ACM Press, 2010, 45–50 DOI:10.1145/1877808.1877819
Freitag S, Weyers B, Bönsch A, Kuhlen T W. Comparison and evaluation of viewpoint quality estimation algorithms for immersive virtual environments. ICAT-EGVE, 2015, 15, 53–60
Neumann L, Sbert M, Gooch B, Purgathofer W. Viewpoint quality: Measures and applications. In: Proceedings of the 1st Eurographics Workshop on Computational Aesthetics in Graphics, Visualization and Imaging. Aire-la-Vile: The Eurographics Association Press, 2005, 185–192
Polonsky O, Patané G, Biasotti S, Gotsman C, Spagnuolo M. What's in an image? The Visual Computer, 2005, 21(8/9/10): 840–847 DOI:10.1007/s00371-005-0326-y
Viola I, Feixas M, Sbert M, Groller M E. Importance-driven focus of attention. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 933–940 DOI:10.1109/tvcg.2006.152
Habibi Z, Caron G, Mouaddib E M. 3D model automatic exploration: smooth and intelligent virtual camera control. Computer Vision-ACCV 2014 Workshops, 2015, 612–626 DOI:10.1007/978-3-319-16631-5_45
Sokolov D, Plemenos D. High level methods for scene exploration. Journal of Virtual Reality and Broadcasting, 2007, 3(12) DOI:10.20385/1860-2037/3.2006.12
Sokolov D, Plemenos D. Virtual world explorations by using topological and semantic knowledge. The Visual Computer, 2008, 24(3): 173–185 DOI:10.1007/s00371-007-0182-z
Tao J, Ma J, Wang C L, Shene C K. A unified approach to streamline selection and viewpoint selection for 3D flow visualization. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(3): 393–406 DOI:10.1109/tvcg.2012.143
Zhao J, Song H C, Xu J B, Wu L D. Automatic exploration path planning for 3D object observation. In: 2009 Fifth International Joint Conference on INC, IMS and IDC. Seoul, Korea (South), IEEE, 2009, 1289–1294 DOI:10.1109/ncm.2009.109
Yang S, Xu J, Chen K, Fu H B. View suggestion for interactive segmentation of indoor scenes. Computational Visual Media, 2017, 3(2): 131–146 DOI:10.1007/s41095-017-0078-4
Zhang C, Zeng W, Liu L G. UrbanVR: an immersive analytics system for context-aware urban design. Computers & Graphics, 2021, 99, 128–138 DOI:10.1016/j.cag.2021.07.006
Freitag S, Weyers B, Kuhlen T W. Automatic speed adjustment for travel through immersive virtual environments based on viewpoint quality. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI). Greenville, SC, USA, IEEE, 2016, 67–70 DOI:10.1109/3dui.2016.7460033
Elmqvist N, Tudoreanu M E, Tsigas P. Evaluating motion constraints for 3D wayfinding in immersive and desktop virtual environments. In: Proceeding of the Twenty-sixth Annual CHI Conference on Human Factors in Computing systems. Florence, Italy, New York, ACM Press, 2008, 1769–1778 DOI:10.1145/1357054.1357330
Liu W Y, D'Oliveira R L, Beaudouin-Lafon M, Rioul O. BIGnav: Bayesian information gain for guiding multiscale navigation. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver Colorado USA, New York, NY, USA, ACM, 2017, 5869–5880 DOI:10.1145/3025453.3025524
Mirhosseini S, Gutenko I, Ojal S, Marino J, Kaufman A E. Automatic speed and direction control along constrained navigation paths. In: 2017 IEEE Virtual Reality (VR). Los Angeles, CA, USA, IEEE, 2017, 29–36 DOI:10.1109/vr.2017.7892228
Wang L L, Wu J, Yang X F, Popescu V. VR exploration assistance through automatic occlusion removal. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(5): 2083–2092 DOI:10.1109/tvcg.2019.2898782
Zhang Y R, Ladevèze N, Fleury C, Bourdot P. Switch techniques to recover spatial consistency between virtual and real world for navigation with teleportation. Virtual Reality and Augmented Reality, 2019, 3–23 DOI:10.1007/978-3-030-31908-3_1
Razali N M, Wah Y B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2011, 2(1): 21–33
Cohen J. Statistical power analysis for the behavioral sciences. Academic Press, 2013
Sawilowsky S S. New effect size rules of thumb. Journal of Modern Applied Statistical Methods, 2009, 8(2): 597–599 DOI:10.22237/jmasm/1257035100
Hart S G. Nasa-task load index (NASA-TLX); 20 years later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2006, 50(9): 904–908 DOI:10.1177/154193120605000909
Hart S G, Staveland L E. Development of NASA-TLX (task load index): results of empirical and theoretical research. Advances in Psychology, 1988, 52: 139–183 DOI:10.1016/s0166-4115(08)62386-9
Kennedy R S, Lane N E, Berbaum K S, Lilienthal M G. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 1993, 3(3): 203–220 DOI:10.1207/s15327108ijap0303_3
Ehrlich J A, Kolasinski E M. A comparison of sickness symptoms between dropout and finishing participants in virtual environment studies. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 1998, 42(21): 1466–1470 DOI:10.1177/154193129804202101