Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(6): 484-500

Published Date:2021-12-20 DOI: 10.1016/j.vrih.2021.10.001

Dynamic targets searching assistance based on virtual camera priority

Abstract

Background
When a user walks freely in an unknown virtual scene and searches for multiple dynamic targets, the lack of a comprehensive understanding of the environment may have a negative impact on the execution of virtual reality tasks. Previous studies can help users with auxiliary tools, such as top view maps or trails, and exploration guidance, for example, automatically generated paths according to the user location and important static spots in virtual scenes. However, in some virtual reality applications, when the scene has complex occlusions, and the user cannot obtain any real-time position information of the dynamic target, the above assistance cannot help the user complete the task more effectively.
Methods
We design a virtual camera priority-based assistance to help the user search dynamic targets efficiently. Instead of forcing users to go to destinations, we provide an optimized instant path to guide them to places where they are more likely to find dynamic targets when they ask for help. We assume that a certain number of virtual cameras are fixed in virtual scenes to obtain extra depth maps, which capture the depth information of the scene and the locations of the dynamic targets. Our method automatically analyzes the priority of these virtual cameras, chooses the destination, and generates an instant path to assist the user in finding the dynamic targets. Our method is suitable for various virtual reality applications that do not require manual supervision or input.
Results
A user study is designed to evaluate the proposed method. The results indicate that compared with three conventional navigation methods, such as the top-view method, our method can help users find dynamic targets more efficiently. The advantages include reducing the task completion time, reducing the number of resets, increasing the average distance between resets, and reducing user task load.
Conclusions
We presented a method for improving dynamic target searching efficiency in virtual scenes by virtual camera priority-based path guidance. Compared with three conventional navigation methods, such as the top-view method, this method can help users find dynamic targets more effectively.

Keyword

Searching assistance ; Virtual environment ; Path guidance ; Redirection

Cite this article

Zixiang ZHAO, Quanwei ZHOU, Xiaoguang HAN, Lili WANG. Dynamic targets searching assistance based on virtual camera priority. Virtual Reality & Intelligent Hardware, 2021, 3(6): 484-500 DOI:10.1016/j.vrih.2021.10.001

References

1. Kruijff E. 3D user interfaces: theory and practice. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(4): 565–572

2. Lynch K. Reconsidering the image of the City. In: Cities of the Mind. Boston, MA: Springer US, 1984, 151–161 DOI:10.1007/978-1-4757-9697-1_9

3. Chen C H, Chen M X. Wayfinding in virtual environments with landmarks on overview maps. Interacting with Computers, 2020, 32(3): 316–329 DOI:10.1093/iwc/iwaa022

4. Keil J, Edler D, Kuchinke L, Dickmann F. Effects of visual map complexity on the attentional processing of landmarks. PLoS One, 2020, 15(3): e0229575 DOI:10.1371/journal.pone.0229575

5. Danyluk K, Ens B, Jenny B, Willett W. A design space exploration of worlds in miniature. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Yokohama Japan, New York, NY, USA, ACM, 2021, 1–15 DOI:10.1145/3411764.3445098

6. Zhao H T, Thrash T, Grossrieder A, Kapadia M, Moussaïd M, Hölscher C, Schinazi V R. The interaction between map complexity and crowd movement on navigation decisions in virtual reality. Royal Society Open Science, 2020, 7(3): 191523 DOI:10.1098/rsos.191523

7. Darken R P, Sibert J L. A toolset for navigation in virtual environments. In: Proceedings of the 6th annual ACM Symposium on User Interface Software and Technology. 1993, 157–165 DOI:10.1145/168642.168658

8. Grammenos D, Filou M, Papadakos P, Stephanidis C. Virtual prints: leaving trails in virtual environments. EGVE, 2002, 2, 131–138

9. Freitag S, Weyers B, Kuhlen T W. Interactive exploration assistance for immersive virtual environments based on object visibility and viewpoint quality. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Tuebingen/Reutlingen, Germany, IEEE, 2018, 355–362 DOI:10.1109/vr.2018.8447553

10. Wu F, Thomas J, Chinnola S, Rosenberg E S. Exploring communication modalities to support collaborative guidance in virtual reality. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). Atlanta, GA, USA, IEEE, 2020, 79–86 DOI:10.1109/vrw50115.2020.00021

11. Darken R P, Peterson B. Spatial orientation, wayfinding, and representation. Handbook of virtual environments. CRC Press, 2002, 533–558

12. Sun J, Stuerzlinger W. Selecting and sliding hidden objects in 3D desktop environments. Graphics Interface, 2019, 8, 1–8

13. Bonn, Germany, IEEE, 2005, 115–122 DOI:10.1109/vr.2005.1492761

14. Freitag S, Löbbert C, Weyers B, Kuhlen T W. Approximating optimal sets of views in virtual scenes. In: 2017 IEEE Virtual Reality (VR). Los Angeles, CA, USA, IEEE, 2017, 311–312 DOI:10.1109/vr.2017.7892301

15. Freitag S, Weyers B, Kuhlen T W. Efficient approximate computation of scene visibility based on navigation meshes and applications for navigation and scene analysis. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI). Los Angeles, CA, USA, IEEE, 2017, 134–143 DOI:10.1109/3dui.2017.7893330

16. Neuville R, Pouliot J, Poux F, Billen R. 3D viewpoint management and navigation in urban planning: application to the exploratory phase. Remote Sensing, 2019, 11(3), 236 DOI:10.3390/rs11030236

17. Zhang Y, Fei G Z, Yang G. 3D viewpoint estimation based on aesthetics. IEEE Access, 2020, 8, 108602–108621 DOI:10.1109/access.2020.3001230

18. Dutagaci H, Cheung C P, Godil A. A benchmark for best view selection of 3D objects. In: Proceedings of the ACM Workshop on 3D Object Retrieva. Firenze, Italy, New York, ACM Press, 2010, 45–50 DOI:10.1145/1877808.1877819

19. Freitag S, Weyers B, Bönsch A, Kuhlen T W. Comparison and evaluation of viewpoint quality estimation algorithms for immersive virtual environments. ICAT-EGVE, 2015, 15, 53–60

20. Neumann L, Sbert M, Gooch B, Purgathofer W. Viewpoint quality: Measures and applications. In: Proceedings of the 1st Eurographics Workshop on Computational Aesthetics in Graphics, Visualization and Imaging. Aire-la-Vile: The Eurographics Association Press, 2005, 185–192

21. Polonsky O, Patané G, Biasotti S, Gotsman C, Spagnuolo M. What's in an image? The Visual Computer, 2005, 21(8/9/10): 840–847 DOI:10.1007/s00371-005-0326-y

22. Viola I, Feixas M, Sbert M, Groller M E. Importance-driven focus of attention. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 933–940 DOI:10.1109/tvcg.2006.152

23. Habibi Z, Caron G, Mouaddib E M. 3D model automatic exploration: smooth and intelligent virtual camera control. Computer Vision-ACCV 2014 Workshops, 2015, 612–626 DOI:10.1007/978-3-319-16631-5_45

24. Sokolov D, Plemenos D. High level methods for scene exploration. Journal of Virtual Reality and Broadcasting, 2007, 3(12) DOI:10.20385/1860-2037/3.2006.12

25. Sokolov D, Plemenos D. Virtual world explorations by using topological and semantic knowledge. The Visual Computer, 2008, 24(3): 173–185 DOI:10.1007/s00371-007-0182-z

26. Tao J, Ma J, Wang C L, Shene C K. A unified approach to streamline selection and viewpoint selection for 3D flow visualization. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(3): 393–406 DOI:10.1109/tvcg.2012.143

27. Zhao J, Song H C, Xu J B, Wu L D. Automatic exploration path planning for 3D object observation. In: 2009 Fifth International Joint Conference on INC, IMS and IDC. Seoul, Korea (South), IEEE, 2009, 1289–1294 DOI:10.1109/ncm.2009.109

28. Yang S, Xu J, Chen K, Fu H B. View suggestion for interactive segmentation of indoor scenes. Computational Visual Media, 2017, 3(2): 131–146 DOI:10.1007/s41095-017-0078-4

29. Zhang C, Zeng W, Liu L G. UrbanVR: an immersive analytics system for context-aware urban design. Computers & Graphics, 2021, 99, 128–138 DOI:10.1016/j.cag.2021.07.006

30. Freitag S, Weyers B, Kuhlen T W. Automatic speed adjustment for travel through immersive virtual environments based on viewpoint quality. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI). Greenville, SC, USA, IEEE, 2016, 67–70 DOI:10.1109/3dui.2016.7460033

31. Elmqvist N, Tudoreanu M E, Tsigas P. Evaluating motion constraints for 3D wayfinding in immersive and desktop virtual environments. In: Proceeding of the Twenty-sixth Annual CHI Conference on Human Factors in Computing systems. Florence, Italy, New York, ACM Press, 2008, 1769–1778 DOI:10.1145/1357054.1357330

32. Liu W Y, D'Oliveira R L, Beaudouin-Lafon M, Rioul O. BIGnav: Bayesian information gain for guiding multiscale navigation. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver Colorado USA, New York, NY, USA, ACM, 2017, 5869–5880 DOI:10.1145/3025453.3025524

33. Mirhosseini S, Gutenko I, Ojal S, Marino J, Kaufman A E. Automatic speed and direction control along constrained navigation paths. In: 2017 IEEE Virtual Reality (VR). Los Angeles, CA, USA, IEEE, 2017, 29–36 DOI:10.1109/vr.2017.7892228

34. Wang L L, Wu J, Yang X F, Popescu V. VR exploration assistance through automatic occlusion removal. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(5): 2083–2092 DOI:10.1109/tvcg.2019.2898782

35. Zhang Y R, Ladevèze N, Fleury C, Bourdot P. Switch techniques to recover spatial consistency between virtual and real world for navigation with teleportation. Virtual Reality and Augmented Reality, 2019, 3–23 DOI:10.1007/978-3-030-31908-3_1

36. Razali N M, Wah Y B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2011, 2(1): 21–33

37. Cohen J. Statistical power analysis for the behavioral sciences. Academic Press, 2013

38. Sawilowsky S S. New effect size rules of thumb. Journal of Modern Applied Statistical Methods, 2009, 8(2): 597–599 DOI:10.22237/jmasm/1257035100

39. Hart S G. Nasa-task load index (NASA-TLX); 20 years later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2006, 50(9): 904–908 DOI:10.1177/154193120605000909

40. Hart S G, Staveland L E. Development of NASA-TLX (task load index): results of empirical and theoretical research. Advances in Psychology, 1988, 52: 139–183 DOI:10.1016/s0166-4115(08)62386-9

41. Kennedy R S, Lane N E, Berbaum K S, Lilienthal M G. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 1993, 3(3): 203–220 DOI:10.1207/s15327108ijap0303_3

42. Ehrlich J A, Kolasinski E M. A comparison of sickness symptoms between dropout and finishing participants in virtual environment studies. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 1998, 42(21): 1466–1470 DOI:10.1177/154193129804202101

Related

1. Rachel HUANG, Carisa HARRIS-ADAMSON, Dan ODELL, David REMPEL, Design of finger gestures for locomotion in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(1): 1-9

2. Jun-Hao YIN, Chin-Boon CHNG, Pooi-Mun WONG, Nicholas HO, Matthew CHUA, Chee-Kong CHUI, VR and AR in human performance researchAn NUS experience Virtual Reality & Intelligent Hardware 2020, 2(5): 381-393

3. Shiguang QIU, Shuntao LIU, Deshuai KONG, Qichang HE, Three-dimensional virtual-real mapping of aircraft autom-atic spray operation and online simulation monitoring Virtual Reality & Intelligent Hardware 2019, 1(6): 611-621

4. Carlos ARCE-LOPERA, María José ARIAS, Gustavo CORRALES, Training birdsong recognition using virtual reality Virtual Reality & Intelligent Hardware 2021, 3(5): 397-406

5. Vivian GÓMEZ, Kelly PEÑARANDA, Pablo FIGUEROA, Lessons learned from requirements gathering for virtual reality simulators Virtual Reality & Intelligent Hardware 2021, 3(5): 407-422

6. Abhishek MUKHOPADHYAY, G S Rajshekar REDDY, KamalPreet Singh SALUJA, Subhankar GHOSH, Anasol PEÑA-RIOS, Gokul GOPAL, Pradipta BISWAS, Virtual-reality-based digital twin of office spaces with social distance measurement feature Virtual Reality & Intelligent Hardware 2022, 4(1): 55-75