Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(4): 287-301

Published Date:2021-8-20 DOI: 10.1016/j.vrih.2021.08.003

Topological distance-constrained feature descriptor learning model for vessel matching in coronary angiographies

Abstract

Background
Feature matching technology is vital to establish the association between virtual and real objects in virtual reality and augmented reality systems. Specifically, it provides them with the ability to match a dynamic scene. Many image matching methods, of which most are deep learning-based, have been proposed over the past few decades. However, vessel fracture, stenosis, artifacts, high background noise, and uneven vessel gray-scale make vessel matching in coronary angiography extremely difficult. Traditional matching methods perform poorly in this regard.
Methods
In this study, a topological distance-constrained feature descriptor learning model is proposed. This model regards the topology of the vasculature as the connection relationship of the centerline. The topological distance combines the geodesic distance between the input patches and constrains the descriptor network by maximizing the feature difference between connected and unconnected patches to obtain more useful potential feature relationships.
Results
Matching patches of different sequences of angiographic images are generated for the experiments. The matching accuracy and stability of the proposed method is superior to those of the existing models.
Conclusions
The proposed method solves the problem of matching coronary angiographies by generating a topological distance-constrained feature descriptor.

Keyword

Vessel matching ; Deep learning ; Feature descriptor ; Coronary angiographies ; Geodesic distance ; Topological distance-constrained

Cite this article

Xiaojiao SONG, Jianjun ZHU, Jingfan FAN, Danni AI, Jian YANG. Topological distance-constrained feature descriptor learning model for vessel matching in coronary angiographies. Virtual Reality & Intelligent Hardware, 2021, 3(4): 287-301 DOI:10.1016/j.vrih.2021.08.003

References

1. Zhang X F, Hu D Y, Ding R J, Wang H C, Yan L X. Status and trend of cardio-cerebral-vascular diseases mortality in China: data from national disease surveillance system between 2004 and 2008. Zhonghua Xin Xue Guan Bing Za Zhi, 2012, 40(3): 179–187

2. Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110 DOI:10.1023/b:visi.0000029664.99615.94

3. Bay H, Ess A, Tuytelaars T, van Gool L. Speeded-up robust features (SURF). Computer Vision and Image Understanding, 2008, 110(3): 346–359 DOI:10.1016/j.cviu.2007.09.014

4. Cao H J, Shang X H, Qi H M. Virtual reality image technology assists training optimization of motion micro-time scale. IEEE Access, 2020, 8: 123215–123227 DOI:10.1109/access.2020.3007389

5. Morel J M, Yu G S. ASIFT: a new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009, 2(2): 438–469 DOI:10.1137/080732730

6. Tola E, Lepetit V, Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815–830 DOI:10.1109/tpami.2009.77

7. , Heidelberg Berlin, Springer Berlin Heidelberg, 2010, 778–792. DOI:10.1007/978-3-642-15561-1_56

8. Rublee E, Rabaud V, Konolige K, Bradski G. ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision. Barcelona, Spain, IEEE, 2011, 2564–2571 DOI:10.1109/iccv.2011.6126544

9. Alahi A, Ortiz R, Vandergheynst P. FREAK: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, IEEE, 2012, 510–517 DOI:10.1109/cvpr.2012.6247715

10. Wang Z H, Fan B, Wu F C. Local intensity order pattern for feature description. In: 2011 International Conference on Computer Vision. Barcelona, Spain, IEEE, 2011, 603–610 DOI:10.1109/iccv.2011.6126294

11. Washington, DC, USA, IEEE, 2004, II DOI:10.1109/cvpr.2004.1315206

12. Brown M, Hua G, Winder S. Discriminative learning of local image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 43–57 DOI:10.1109/tpami.2010.54

13. Gionis A. Similarity search in high dimensions via hashing. Proc of Vldb Conference. Morgan Kaufmann Publishers Inc. 1999

14. Kulis B, Grauman K. Kernelized locality-sensitive hashing for scalable image search. In: 2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan, IEEE, 2009, 2130–2137 DOI:10.1109/iccv.2009.5459466

15. Schölkopf B, Platt J, Hofmann T. Fundamental limitations of spectral clustering. Conference on Advances in Neural Information Processing Systems. MIT Press, 2006 DOI:10.7551/mitpress/7503.003.0132

16. Salakhutdinov R, Hinton G. Semantic hashing. International Journal of Approximate Reasoning, 2009, 50(7): 969–978 DOI:10.1016/j.ijar.2008.11.006

17. Bhowmik A, Gumhold S, Rother C, Brachmann E. Reinforced feature points: optimizing feature detection and description for a high-level task. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, IEEE, 2020, 4947–4956 DOI:10.1109/cvpr42600.2020.00500

18. Simo-Serra E, Trulls E, Ferraz L, Kokkinos I, Fua P, Moreno-Noguer F. Discriminative learning of deep convolutional feature point descriptors. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, IEEE, 2015, 118–126 DOI:10.1109/iccv.2015.22

19. York, UK, British Machine Vision Association, 2016 DOI:10.5244/c.30.119

20. Tian Y R, Fan B, Wu F C. L2-net: deep learning of discriminative patch descriptor in euclidean space. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 6128–6136 DOI:10.1109/cvpr.2017.649

21. Mishchuk A, Mishkin D, Radenovic F, Matas J. Working hard to know your neighbor's margins: Local descriptor learning loss. 2017

22. Smeets D, Bruyninckx P, Keustermans J. Robust matching of 3D lung vessel trees. MICCAI 2010 Workshop Proceedings of the Third International Workshop on Pulmonary Image Analysis Pages. 2010

23. Serradell E, Pinheiro M A, Sznitman R, Kybic J, Moreno-Noguer F, Fua P. Non-rigid graph registration using active testing search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 625–638 DOI:10.1109/tpami.2014.2343235

24. Ma J Y, Zhou H B, Zhao J, Gao Y, Jiang J J, Tian J W. Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6469–6481 DOI:10.1109/tgrs.2015.2441954

25. Ma J Y, Jiang J J, Zhou H B, Zhao J, Guo X J. Guided locality preserving feature matching for remote sensing image registration. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4435–4447 DOI:10.1109/tgrs.2018.2820040

26. Benseghir T, Malandain G, Vaillant R. Iterative closest curve: a framework for curvilinear structure registration application to 2D/3D coronary arteries registration. Medical Image Computing and Computer-Assisted Intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention, 2013, 16(Pt 1): 179–186 DOI:10.1007/978-3-642-40811-3_23

27. Springer International Publishing, 2018, 810–818 DOI:10.1007/978-3-030-00928-1_91

28. Fischler M A, Bolles R C. Random sample consensus. Communications of the ACM, 1981, 24(6): 381–395 DOI:10.1145/358669.358692

29. Torr P H S, Zisserman A. MLESAC: a new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 2000, 78(1): 138–156 DOI:10.1006/cviu.1999.0832

30. Cardiff, British Machine Vision Association, 2002 DOI:10.5244/c.16.44

31. Ni K, Jin H L, Dellaert F. GroupSAC: Efficient consensus in the presence of groupings. In: 2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan, IEEE, 2009, 2193–2200 DOI:10.1109/iccv.2009.5459241

32. Chum O, Matas J, Kittler J. Locally optimized RANSAC. In: Lecture Notes in Computer Science. Berlin, Heidelberg, Springer Berlin Heidelberg, 2003, 236–243 DOI:10.1007/978-3-540-45243-0_31

33. Chen J, Tian J, Lee N, Zheng J, Smith R T, Laine A F. A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Transactions on Biomedical Engineering, 2010, 57(7): 1707–1718 DOI:10.1109/tbme.2010.2042169

34. Balntas V, Lenc K, Vedaldi A, Mikolajczyk K. HPatches: a benchmark and evaluation of handcrafted and learned local descriptors. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 3852–3861 DOI:10.1109/cvpr.2017.410

Related

1. Lianyu ZHENG, Xinyu LIU, Zewu AN, Shufei LI, Renjie ZHANG, A smart assistance system for cable assembly by combining wearable augmented reality with portable visual inspection Virtual Reality & Intelligent Hardware 2020, 2(1): 12-27

2. Zhiyuan ZHANG, Yuchao DAI, Jiadai SUN, Deep learning based point cloud registration: an overview Virtual Reality & Intelligent Hardware 2020, 2(3): 222-246

3. Zike YAN, Hongbin ZHA, Flow-based SLAM: From geometry computation to learning Virtual Reality & Intelligent Hardware 2019, 1(5): 435-460

4. Yuanyuan SHI, Yunan LI, Xiaolong FU, Kaibin MIAO, Qiguang MIAO, Review of dynamic gesture recognition Virtual Reality & Intelligent Hardware 2021, 3(3): 183-206

5. Wei LYU, Zhong ZHOU, Lang CHEN, Yi ZHOU, A survey on image and video stitching Virtual Reality & Intelligent Hardware 2019, 1(1): 55-83