Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(4): 261-273

Published Date:2021-8-20 DOI: 10.1016/j.vrih.2021.08.001

Orthodontic simulation system with force feedback for training complete bracket placement procedures

Abstract

Background
A virtual system that simulates the complete process of orthodontic bracket placement can be used for pre-clinical skill training to help students gain confidence by performing the required tasks on a virtual patient.
Methods
The hardware for the virtual simulation system is built using two force feedback devices to support bi-manual force feedback operation. A 3D mouse is used to adjust the position of the virtual patient. A multi-threaded computational methodology is adopted to satisfy the requirements of the frame rate. The computation threads mainly consist of the haptic thread running at a frequency of >1000Hz and the graphic thread at >30Hz. The graphic thread allows the graphics engine to effectively display the visual effects of biofilm removal and acid erosion through texture mapping. Using the haptic thread, the physics engine adopts the hierarchy octree collision-detection algorithm to simulate the multi-point and multi-region interaction between the tools and the virtual environment. Its high efficiency guarantees that the time cost can be controlled within 1 ms. The physics engine also performs collision detection between the tools and particles, making it possible to simulate paint and removal of colloids. The surface-contact constraints are defined in the system; this ensures that the bracket will not divorce from or embed into the tooth during the adjustment of the bracket. Therefore, the simulated adjustment is more realistic and natural.
Results
A virtual system to simulate the complete process of orthodontic bracket bonding was developed. In addition to bracket bonding and adjustment, the system simulates the necessary auxiliary steps such as smearing, acid etching, and washing. Furthermore, the system supports personalized case training.
Conclusions
The system provides a new method for students to practice orthodontic skills.

Keyword

Orthodontic treatment ; Complete procedures ; Force feedback ; Simulation system

Cite this article

Fan YE, Luwei LIU, Bin YAN, Xiaohan ZHAO, Aimin HAO. Orthodontic simulation system with force feedback for training complete bracket placement procedures. Virtual Reality & Intelligent Hardware, 2021, 3(4): 261-273 DOI:10.1016/j.vrih.2021.08.001

References

1. Hou P Y. Orthodontics. Beijing: Science Press, 2011

2. Iliadi A, Koletsi D, Eliades T. Forces and moments generated by aligner-type appliances for orthodontic tooth movement: a systematic review and meta-analysis. Orthodontics & Craniofacial Research, 2019, 22(4): 248–258 DOI:10.1111/ocr.12333

3. Du H Y, Jia Y X, Zhang Y D, Liu Y. Trajectory planning of archwire bending robot. China Mechanical Engineering, 2010, 21(13): 1605–1608(in Chinese)

4. Zhang D L, Zhou C H, Bai Y X. CN, CN201220370809.X

5. Mcnamara J A . Ordinary orthodontics: starting with the end in mind. World Journal of Orthodontics, 2000, 45–54

6. Alrbata R. Accurate bracket positioning as a prerequisite for ideal orthodontic finishing. International Journal of Orthodontic Rehabilitation, 2017, 8(1): 3 DOI:10.4103/2349-5243.200223

7. Bai D, Zhao Z H. Advanced strategy with positive control in orthodontics. Beijing: People's Medical Press, 2015

8. Brown M W, Koroluk L, Ko C C, Zhang K, Chen M Q, Nguyen T. Effectiveness and efficiency of a CAD/CAM orthodontic bracket system. American Journal of Orthodontics and Dentofacial Orthopedics, 2015, 148(6): 1067–1074 DOI:10.1016/j.ajodo.2015.07.029

9. Perry S, Bridges S M, Burrow M F. A review of the use of simulation in dental education. Simulation in Healthcare, 2015, 10(1): 31–37 DOI:10.1097/sih.0000000000000059

10. Bakr M, Massey W, Alexander H. Evaluation of simodont haptic 3D virtual reality dental training simulator. International Journal of Dental Clinics, 2013, 5(4):1-6

11. Anderson P, Ma M H, Poyade M. A Haptic-based virtual reality head and neck model for dental education. Virtual, Augmented Reality and Serious Games for Healthcare 1, 2014 DOI:10.1007/978-3-642-54816-1_3

12. Wang D, Li T, Zhang Y, Hou J. Survey on multisensory feedback virtual reality dental training systems. European Journal of Dental Education, 2016, 20(4): 248–260 DOI:10.1111/eje.12173

13. Ma Y Q, Li Z K. Computer aided orthodontics treatment by virtual segmentation and adjustment. In: 2010 International Conference on Image Analysis and Signal Processing. Zhejiang, China, IEEE, 2010, 336–339 DOI:10.1109/iasp.2010.5476100

14. Verstreken K, Van Cleynenbreugel J, Martens K, Marchal G, van Steenberghe D, Suetens P. An image-guided planning system for endosseous oral implants. IEEE Transactions on Medical Imaging, 1998, 17(5): 842–852 DOI:10.1109/42.736056

15. Kusumoto N, Sohmura T, Yamada S, Wakabayashi K, Nakamura T, Yatani H. Application of virtual reality force feedback haptic device for oral implant surgery. Clinical Oral Implants Research, 2006, 17(6): 708–713 DOI:10.1111/j.1600-0501.2006.01218.x

16. Sohmura T, Hojo H, Nakajima M, Wakabayashi K, Nagao M, Iida S, Kitagawa T, Kogo M, Kojima T, Matsumura K, Nakamura T, Takahashi J. Prototype of simulation of orthognathic surgery using a virtual reality haptic device. International Journal of Oral and Maxillofacial Surgery, 2004, 33(8): 740–750 DOI:10.1016/j.ijom.2004.03.003

17. Wang D X, Zhang Y R, Hou J X, Wang Y, Lv P, Chen Y G, Zhao H. iDental: a haptic-based dental simulator and its preliminary user evaluation. IEEE Transactions on Haptics, 2012, 5(4): 332–343 DOI:10.1109/toh.2011.59

18. Wang D X, Tong H, Shi Y J, Zhang Y R. Interactive haptic simulation of tooth extraction by a constraint-based haptic rendering approach. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA, IEEE, 2015, 278–284 DOI:10.1109/icra.2015.7139012

19. Wu J, Wang D X, Wang C C L, Zhang Y R. Toward stable and realistic haptic interaction for tooth preparation simulation. Journal of Computing and Information Science in Engineering, 2010, 10(2): 021007 DOI:10.1115/1.3402759

20. Zhao X, Zhu Z, Cong Y, Zhao Y, Zhang Y, Wang D. Haptic rendering of diverse tool-tissue contact constraints during dental implantation procedures. Front Robot AI, 2020, 7: 35 DOI:10.3389/frobt.2020.00035

21. Barab S A, Hay K E, Barnett M, Squire K. Constructing virtual worlds: tracing the historical development of learner practices. Cognition and Instruction, 2001, 19(1): 47–94 DOI:10.1207/s1532690xci1901_2

22. Peng C, Song J L. Application of virtual reality technology in the teaching of advanced orthodontists . Journal of Changchun Education Institute, 2014, 30(11): 94–95(in Chinese)

23. Ji F. Research and development of virtual orthodontic system. Xi'an: Xi'an University of Science and Technology, 2006 (in Chinese)

24. Roy E, Bakr M M, George R. The need for virtual reality simulators in dental education: a review. The Saudi Dental Journal, 2017, 29(2): 41–47 DOI:10.1016/j.sdentj.2017.02.001

25. Yoshida Y, Yamaguchi S, Kawamoto Y, Noborio H, Murakami S, Sohmura T. Development of a multi-layered virtual tooth model for the haptic dental training system. Dental Materials Journal, 2011, 30(1): 1–6 DOI:10.4012/dmj.2010-082

26. Kwon H B, Park Y S, Han J S. Augmented reality in dentistry: a current perspective. Acta Odontologica Scandinavica, 2018, 76(7): 497–503 DOI:10.1080/00016357.2018.1441437

27. Gandedkar N H, Vaid N R, Darendeliler M A, Premjani P, Ferguson D J. The last decade in orthodontics: a scoping review of the hits, misses and the near misses! Seminars in Orthodontics, 2019, 25(4): 339–355 DOI:10.1053/j.sodo.2019.10.006

28. Rao G K L, Mokhtar N B, Iskandar Y H P. An integration of augmented reality technology for orthodontic education: Case of bracket positioning. In: 2017 IEEE Conference on e-Learning, e-Management and e-Services (IC3e). Miri, Malaysia, IEEE, 2017, 7–11 DOI:10.1109/ic3e.2017.8409230

29. Wang D X, Zhang X, Zhang Y R, Xiao J. Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. In: 2011 IEEE International Conference on Robotics and Automation. Shanghai, China, IEEE, 2011, 906–912 DOI:10.1109/icra.2011.5979754

Related

1. Aimin HAO, Jiahao CUI, Shuai LI, Qinping ZHAO, Personalized cardiovascular intervention simulation system Virtual Reality & Intelligent Hardware 2020, 2(2): 104-118