Redirected jumping in virtual scenes with alleys
School of Computer Science and Engineering, Beihang University, Beijing 100191, China
Abstract
Keywords: Virtual reality ; Virtual locomotion ; Redirected walking ; Redirected jumping ; Detection threshold
Content



0.25 | PSE | 0.75 | Range | R 2 | |
---|---|---|---|---|---|
1m | 0.7015 | 0.9909 | 1.2803 | 0.5788 | 0.9728 |
2m | 0.6722 | 1.0014 | 1.3307 | 0.6585 | 0.9758 |
8m | 0.6397 | 1.0145 | 1.3893 | 0.7496 | 0.9331 |
16m | 0.5373 | 0.9788 | 1.4204 | 0.8831 | 0.9212 |
24m | 0.5583 | 0.9904 | 1.4226 | 0.8643 | 0.9449 |
40m | 0.5515 | 0.9915 | 1.4314 | 0.8799 | 0.8729 |
BE | 1 | 2 | 8 | 16 | 24` | 40 | |
---|---|---|---|---|---|---|---|
Mean | 2.58 | 6.10 | 7.8 | 17.21 | 11.86 | 11.56 | 8.80 |
SD | 2.52 | 2.66 | 2.46 | 4.80 | 4.44 | 4.28 | 2.60 |



0.25 | PSE | 0.75 | Range | R 2 | |
---|---|---|---|---|---|
1m | 0.7145 | 1.0374 | 1.3603 | 1.4085 | 0.9749 |
2m | 0.5090 | 0.9641 | 1.4192 | 0.98 | 0.9894 |
8m | 0.3768 | 1.0089 | 1.6411 | 0.4345 | 0.9848 |
16m | 0.2611 | 1.1393 | 2.0175 | 0.5404 | 0.9463 |
24m | 0.1343 | 1.1039 | 2.0736 | 0.6035 | 0.9814 |
40m | 0.1125 | 1.0995 | 2.0866 | 0.7912 | 0.8974 |
BE | 1 | 2 | 8 | 16 | 24 | 40 | |
---|---|---|---|---|---|---|---|
Mean | 2.14 | 4.17 | 8.08 | 10.03 | 13.09 | 11.43 | 12.62 |
SD | 2.58 | 3.42 | 3.80 | 5.71 | 6.05 | 5.14 | 4.81 |



0.25 | PSE | 0.75 | Difference | R 2 | |
---|---|---|---|---|---|
1m | 0.2612 | 1.009 | 1.7569 | 1.4957 | 0.8948 |
2m | 0.4437 | 0.9911 | 1.5485 | 1.1148 | 0.8680 |
8m | 0.7998 | 1.0122 | 1.2245 | 0.4247 | 0.9746 |
16m | 0.7150 | 1.0209 | 1.3269 | 0.6119 | 0.9551 |
24m | 0.6340 | 1.0028 | 1.3715 | 0.7375 | 0.9371 |
40m | 0.6145 | 1.0012 | 1.3879 | 0.7734 | 0.9297 |
BE | 1 | 2 | 8 | 16 | 24 | 40 | |
---|---|---|---|---|---|---|---|
Mean | 3.29 | 7.45 | 19.60 | 20.00 | 17.99 | 12.70 | 15.6 |
SD | 2.75 | 3.61 | 8.33 | 9.35 | 8.24 | 7.06 | 8.45 |

Reference
Iwata H. The Torus Treadmill: realizing locomotion in VEs. IEEE Computer Graphics and Applications, 1999, 19(6): 30–35 DOI:10.1109/38.799737
Nilsson N C, Serafin S, Laursen M H, Pedersen K S, Sikström E, Nordahl R. Tapping-In-Place: Increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI). Orlando, FL, USA, IEEE, 2013, 31–38 DOI:10.1109/3dui.2013.6550193
Langbehn E, Lubos P, Steinicke F. Evaluation of locomotion techniques for room-scale VR: joystick, teleportation, and redirected walking. In: Proceedings of the Virtual Reality International Conference——Laval Virtual. Laval France, New York, NY, USA, ACM, 2018, 1–9 DOI:10.1145/3234253.3234291
Razzaque S, Kohn Z, Whitton M C. Redirected walking. EUROGRAPHICS, 2001
Havlík T, Hayashi D, Fujita K, Takashima K, Lindeman R W, Kitamura Y. Jumpinvr: Enhancing jump experience in a limited physical space. In: SIGGRAPH Asia, 2019, 19–20 DOI:10.1145/3355355.3361895
Nilsson N C, Peck T, Bruder G, Hodgson E, Serafin S, Whitton M, Steinicke F, Rosenberg E S. 15 years of research on redirected walking in immersive virtual environments. IEEE Computer Graphics and Applications, 2018, 38(2): 44–56 DOI:10.1109/mcg.2018.111125628
Freitag S, Weyers B, Kuhlen T W. Examining rotation gain in CAVE-like virtual environments. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(4): 1462–1471 DOI:10.1109/tvcg.2016.2518298
Zhang J, Langbehn E, Krupke D, Katzakis N, Steinicke F. Detection thresholds for rotation and translation gains in 360° video- based telepresence systems. IEEE Transactions on Visualization and Computer Graphics, 2018, 1671–1680 DoI: 10.1109/TVCG.2018.2793679
Williams N, Peck T C. Estimation of rotation gain thresholds for redirected walking considering FOV and gender. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Osaka, Japan, IEEE, 2019, 1229–1230 DOI:10.1109/vr.2019.8798117[
Hayashi D, Fujita K, Takashima K, Lindeman R W, Kitamura Y. Redirected jumping: imperceptibly manipulating jump motions in virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Osaka, Japan, IEEE, 2019, 386–394 DOI:10.1109/vr.2019.8797989
Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Analyses of human sensitivity to redirected walking. In: Proceedings of the 2008 ACM symposium on Virtual reality software and technology. Bordeaux, France, New York: ACM Press, 2008, 149–156 DOI:10.1145/1450579.1450611
Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Estimation of detection thresholds for redirected walking techniques. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(1): 17–27 DOI:10.1109/tvcg.2009.62
Langbehn E, Lubos P, Bruder G, Steinicke F. Bending the curve: sensitivity to bending of curved paths and application in room-scale VR. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4), 1389–1398 DOI:10.1109/tvcg.2017.2657220
Neth C T, Souman J L, Engel D, Kloos U, Bülthoff H H, Mohler B J. Velocity-dependent dynamic curvature gain for redirected walking. IEEE Virtual Reality Conference, 2011, 151–158 DOI:10.1109/vr.2011.5759454
Bruder G, Lubos P, Steinicke F. Cognitive Resource Demands of Redirected Walking. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(4):539–544 DOI:10.1109/TVCG.2015.2391864
Bölling L, Stein N, Steinicke F, Lappe M. Shrinking circles: adaptation to increased curvature gain in redirected walking. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(5): 2032–2039 DOI:10.1109/tvcg.2019.2899228
Reimer D, Langbehn E, Kaufmann H, Scherzer D. The influence of full-body representation on translation and curvature gain. In: 2020 IEEE Conference on VR and 3D User Interfaces Abstracts and Workshops (VRW). 2020, 154–159
Matsumoto K, Langbehn E, Narumi T, Steinicke F. Detection thresholds for vertical gains in VR and drone-based telepresence systems. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 101–107 DOI:10.1109/vr46266.2020.00028
Matsumoto K, Narumi T, Tanikawa T, Hirose M. Walking uphill and downhill: redirected walking in the vertical direction. In: ACM SIGGRAPH 2017 Posters. Los Angeles California, New York, NY, USA, ACM, 2017, 1–2 DOI:10.1145/3102163.3102227
Jung S, Borst C W, Hoermann S, Lindeman R W. Redirected jumping: perceptual detection rates for curvature gains. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. New Orleans, LA, USA, ACM, 2019, 1085–1092 DOI:10.1145/3332165.3347868
Bruder G, Steinicke F, Wieland P, Lappe M. Tuning self-motion perception in VR with visual illusions. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(7): 1068–1078 DOI:10.1109/TVCG.2011.274
Lappe M, Jenkin M, Harris L R. Travel distance estimation from visual motion by leaky path integration. Experimental Brain Research, 2007, 180(1): 35–48 DOI:10.1007/s00221-006-0835-6
Steinicke F, Bruder G, Jerald J, Frenz, H, Lappe M. Estimation of detection thresholds for redirected walking techniques. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(1): 17–27 DOI:10.1109/TVCG.2009.62
Lappe M, Jenkin M, Harris L R. Travel distance estimation from visual motion by leaky path integration. Experimental Brain Research, 2007, 180(1): 35–48 DOI:10.1007/s00221-006-0835-6
Riecke B E, Västfjäll L, Schulte-Pelkum J. Top-down and multi-modal influences on self-motion perception in virtual reality. 2005
Basting O, Fuhrmann A, Grünvogel S M. The effectiveness of changing the field of view in a hmd on the perceived self-motion. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), 2017, 225–226 DOI:10.1109/3DUI.2017.7893353
Riecke B E, Schulte-Pelkum J, Avraamides M N, Heyde M V D, Bülthoff H H. Cognitive factors can influence self-motion perception (vection) in VR. ACM Transactions on Applied Perception, 2006, 3(3): 194–216 DoI: 10.1145/1166087.1166091
Kennedy R S, Lane N E, Berbaum K S. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology, 1993, 3(3): 203–220 DOI:10.1207/s15327108ijap0303_3