Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(6): 470-483

Published Date:2021-12-20 DOI: 10.1016/j.vrih.2021.06.004

Redirected jumping in virtual scenes with alleys

Abstract

Background
The redirected jumping (RDJ) technique is a new locomotion method that saves physical tracking area and enhances the body movement experience of users in virtual reality. In a previous study, the range of imperceptible manipulation gains in RDJ was discussed in an empty virtual environment (VE).
Methods
In this study, we conducted three tasks to investigate the influence of alley width on the detection threshold of jump redirection in a VE.
Results
The results demonstrated that the imperceptible distance gain range in RDJ was not associated with the width of the alleys. The imperceptible height and rotation gain ranges in RDJ are related to the width of the alleys.
Conclusions
We preliminarily summarized the relationship between the occlusion distance and manipulation range of the three gains in a complex environment. Simultaneously, the guiding principle for choosing three gains in RDJ according to the occlusion distance in a complex environment is provided.

Keyword

Virtual reality ; Virtual locomotion ; Redirected walking ; Redirected jumping ; Detection threshold

Cite this article

Xiaolong LIU, Lili WANG. Redirected jumping in virtual scenes with alleys. Virtual Reality & Intelligent Hardware, 2021, 3(6): 470-483 DOI:10.1016/j.vrih.2021.06.004

References

1. Iwata H. The Torus Treadmill: realizing locomotion in VEs. IEEE Computer Graphics and Applications, 1999, 19(6): 30–35 DOI:10.1109/38.799737

2. Nilsson N C, Serafin S, Laursen M H, Pedersen K S, Sikström E, Nordahl R. Tapping-In-Place: Increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI). Orlando, FL, USA, IEEE, 2013, 31–38 DOI:10.1109/3dui.2013.6550193

3. Langbehn E, Lubos P, Steinicke F. Evaluation of locomotion techniques for room-scale VR: joystick, teleportation, and redirected walking. In: Proceedings of the Virtual Reality International Conference——Laval Virtual. Laval France, New York, NY, USA, ACM, 2018, 1–9 DOI:10.1145/3234253.3234291

4. Razzaque S, Kohn Z, Whitton M C. Redirected walking. EUROGRAPHICS, 2001

5. Havlík T, Hayashi D, Fujita K, Takashima K, Lindeman R W, Kitamura Y. Jumpinvr: Enhancing jump experience in a limited physical space. In: SIGGRAPH Asia, 2019, 19–20 DOI:10.1145/3355355.3361895

6. Nilsson N C, Peck T, Bruder G, Hodgson E, Serafin S, Whitton M, Steinicke F, Rosenberg E S. 15 years of research on redirected walking in immersive virtual environments. IEEE Computer Graphics and Applications, 2018, 38(2): 44–56 DOI:10.1109/mcg.2018.111125628

7. Freitag S, Weyers B, Kuhlen T W. Examining rotation gain in CAVE-like virtual environments. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(4): 1462–1471 DOI:10.1109/tvcg.2016.2518298

8. Zhang J, Langbehn E, Krupke D, Katzakis N, Steinicke F. Detection thresholds for rotation and translation gains in 360° video- based telepresence systems. IEEE Transactions on Visualization and Computer Graphics, 2018, 1671–1680 DoI: 10.1109/TVCG.2018.2793679

9. Williams N, Peck T C. Estimation of rotation gain thresholds for redirected walking considering FOV and gender. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Osaka, Japan, IEEE, 2019, 1229–1230 DOI:10.1109/vr.2019.8798117[

10. Hayashi D, Fujita K, Takashima K, Lindeman R W, Kitamura Y. Redirected jumping: imperceptibly manipulating jump motions in virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Osaka, Japan, IEEE, 2019, 386–394 DOI:10.1109/vr.2019.8797989

11. Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Analyses of human sensitivity to redirected walking. In: Proceedings of the 2008 ACM symposium on Virtual reality software and technology. Bordeaux, France, New York: ACM Press, 2008, 149–156 DOI:10.1145/1450579.1450611

12. Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Estimation of detection thresholds for redirected walking techniques. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(1): 17–27 DOI:10.1109/tvcg.2009.62

13. Langbehn E, Lubos P, Bruder G, Steinicke F. Bending the curve: sensitivity to bending of curved paths and application in room-scale VR. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4), 1389–1398 DOI:10.1109/tvcg.2017.2657220

14. Neth C T, Souman J L, Engel D, Kloos U, Bülthoff H H, Mohler B J. Velocity-dependent dynamic curvature gain for redirected walking. IEEE Virtual Reality Conference, 2011, 151–158 DOI:10.1109/vr.2011.5759454

15. Bruder G, Lubos P, Steinicke F. Cognitive Resource Demands of Redirected Walking. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(4):539–544 DOI:10.1109/TVCG.2015.2391864

16. Bölling L, Stein N, Steinicke F, Lappe M. Shrinking circles: adaptation to increased curvature gain in redirected walking. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(5): 2032–2039 DOI:10.1109/tvcg.2019.2899228

17. Reimer D, Langbehn E, Kaufmann H, Scherzer D. The influence of full-body representation on translation and curvature gain. In: 2020 IEEE Conference on VR and 3D User Interfaces Abstracts and Workshops (VRW). 2020, 154–159

18. Matsumoto K, Langbehn E, Narumi T, Steinicke F. Detection thresholds for vertical gains in VR and drone-based telepresence systems. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 101–107 DOI:10.1109/vr46266.2020.00028

19. Matsumoto K, Narumi T, Tanikawa T, Hirose M. Walking uphill and downhill: redirected walking in the vertical direction. In: ACM SIGGRAPH 2017 Posters. Los Angeles California, New York, NY, USA, ACM, 2017, 1–2 DOI:10.1145/3102163.3102227

20. Jung S, Borst C W, Hoermann S, Lindeman R W. Redirected jumping: perceptual detection rates for curvature gains. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. New Orleans, LA, USA, ACM, 2019, 1085–1092 DOI:10.1145/3332165.3347868

21. Bruder G, Steinicke F, Wieland P, Lappe M. Tuning self-motion perception in VR with visual illusions. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(7): 1068–1078 DOI:10.1109/TVCG.2011.274

22. Lappe M, Jenkin M, Harris L R. Travel distance estimation from visual motion by leaky path integration. Experimental Brain Research, 2007, 180(1): 35–48 DOI:10.1007/s00221-006-0835-6

23. Steinicke F, Bruder G, Jerald J, Frenz, H, Lappe M. Estimation of detection thresholds for redirected walking techniques. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(1): 17–27 DOI:10.1109/TVCG.2009.62

24. Lappe M, Jenkin M, Harris L R. Travel distance estimation from visual motion by leaky path integration. Experimental Brain Research, 2007, 180(1): 35–48 DOI:10.1007/s00221-006-0835-6

25. Riecke B E, Västfjäll L, Schulte-Pelkum J. Top-down and multi-modal influences on self-motion perception in virtual reality. 2005

26. Basting O, Fuhrmann A, Grünvogel S M. The effectiveness of changing the field of view in a hmd on the perceived self-motion. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), 2017, 225–226 DOI:10.1109/3DUI.2017.7893353

27. Riecke B E, Schulte-Pelkum J, Avraamides M N, Heyde M V D, Bülthoff H H. Cognitive factors can influence self-motion perception (vection) in VR. ACM Transactions on Applied Perception, 2006, 3(3): 194–216 DoI: 10.1145/1166087.1166091

28. Kennedy R S, Lane N E, Berbaum K S. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology, 1993, 3(3): 203–220 DOI:10.1207/s15327108ijap0303_3

Related

1. Yijun LI, Miao WANG, Derong JIN, Frank STEINICKE, Qinping ZHAO, Effects of virtual environment and self-representations on perception and physical performance in redirected jumping Virtual Reality & Intelligent Hardware 2021, 3(6): 451-469

2. Liming WANG, Xianwei CHEN, Tianyang DONG, Jing FAN, Virtual climbing: An immersive upslope walking system using passive haptics Virtual Reality & Intelligent Hardware 2021, 3(6): 435-450

3. Yang LI, Dong WU, Jin HUANG, Feng TIAN, Hong'an WANG, Guozhong DAI, Influence of multi-modality on moving target selection in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(3): 303-315

4. Yang LI, Jin HUANG, Feng TIAN, Hong-An WANG, Guo-Zhong DAI, Gesture interaction in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(1): 84-112

5. Athirah SYAMIMI, Yiwei GONG, Ryan LIEW, VR industrial applicationsA singapore perspective Virtual Reality & Intelligent Hardware 2020, 2(5): 409-420

6. Jie GUO, Dongdong WENG, Yue LIU, Qiyong CHEN, Yongtian WANG, Analysis of teenagers' preferences and concerns regarding HMDs in education Virtual Reality & Intelligent Hardware 2021, 3(5): 369-382

7. Susu HUANG, Daqing QI, Jiabin YUAN, Huawei TU, Review of studies on target acquisition in virtual reality based on the crossing paradigm Virtual Reality & Intelligent Hardware 2019, 1(3): 251-264

8. Yukang YAN, Xin YI, Chun YU, Yuanchun SHI, Gesture-based target acquisition in virtual and augmented reality Virtual Reality & Intelligent Hardware 2019, 1(3): 276-289

9. Yuan GAO, Le XIE, A review on the application of augmented reality in craniomaxillofacial surgery Virtual Reality & Intelligent Hardware 2019, 1(1): 113-120

10. Yuan CHANG, Guo-Ping WANG, A review on image-based rendering Virtual Reality & Intelligent Hardware 2019, 1(1): 39-54

11. Shiguang QIU, Shuntao LIU, Deshuai KONG, Qichang HE, Three-dimensional virtual-real mapping of aircraft autom-atic spray operation and online simulation monitoring Virtual Reality & Intelligent Hardware 2019, 1(6): 611-621

12. Xu PENG, Zhenyu GAO, Yitong DING, Dongfeng ZHAO, Xiaoyu CHI, Study of ghost image suppression in polarized catadioptric virtual reality optical systems Virtual Reality & Intelligent Hardware 2020, 2(1): 70-78

13. Zhiming HU, Sheng LI, Meng GAI, Temporal continuity of visual attention for future gaze prediction in immersive virtual reality Virtual Reality & Intelligent Hardware 2020, 2(2): 142-152

14. Lihui HUANG, Siti Faatihah Binte Mohd TAIB, Ryan Aung BA, Zhe An GOH, Mengshan XU, Virtual reality research and development in NTU Virtual Reality & Intelligent Hardware 2020, 2(5): 394-408

15. Stéphanie PHILIPPE, Alexis D. SOUCHET, Petros LAMERAS, Panagiotis PETRIDIS, Julien CAPORAL, Gildas COLDEBOEUF, Hadrien DUZAN, Multimodal teaching, learning and training in virtual reality: a review and case study Virtual Reality & Intelligent Hardware 2020, 2(5): 421-442

16. Jia Ming LEE, Xinxing XIA, Clemen OW, Felix CHUA, Yunqing GUAN, VEGO: A novel design towards customizable and adjustable head-mounted display for VR Virtual Reality & Intelligent Hardware 2020, 2(5): 443-453

17. Jingcheng QIAN, Yancong MA, Zhigeng PAN, Xubo YANG, Effects of Virtual-real fusion on immersion, presence, and learning performance in laboratory education Virtual Reality & Intelligent Hardware 2020, 2(6): 569-584

18. Hengwei XU, Siru LI, Wenpeng SONG, Jiajun SUN, Xinli WU, Xiaoqi WANG, Wenzhen YANG, Zhigeng PAN, Abdennour EI RHALIBI, Thermal perception method of virtual chemistry experiments Virtual Reality & Intelligent Hardware 2020, 2(4): 305-315

19. TJ MATTHEWS, Feng TIAN, Tom DOLBY, Interaction design for paediatric emergency VR training Virtual Reality & Intelligent Hardware 2020, 2(4): 330-344

20. Hongxin ZHANG, Jin ZHANG, Xue YIN, Kan ZHOU, Zhigeng PAN, Abdennour EI RHALIBI, Cloud-to-end rendering and storage management for virtual reality in experimental education Virtual Reality & Intelligent Hardware 2020, 2(4): 368-380

21. Xiang ZHOU, Liyu TANG, Ding LIN, Wei HAN, Virtual & augmented reality for biological microscope in experiment education Virtual Reality & Intelligent Hardware 2020, 2(4): 316-329

22. Haoyu WANG, Jianhuang WU, A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction Virtual Reality & Intelligent Hardware 2021, 3(4): 302-314

23. Na ZHANG, Liwen TAN, Fengying LI, Bing HAN, Yifa XU, Development and application of digital assistive teaching system for anatomy Virtual Reality & Intelligent Hardware 2021, 3(4): 315-335

24. Daniel VANKOV, David JANKOVSZKY, Effects of using headset-delivered virtual reality in road safety research: A systematic review of empirical studies Virtual Reality & Intelligent Hardware 2021, 3(5): 351-368

25. Dangxiao WANG, Yuan GUO, Shiyi LIU, Yuru ZHANG, Weiliang XU, Jing XIAO, Haptic display for virtual reality: progress and challenges Virtual Reality & Intelligent Hardware 2019, 1(2): 136-162

26. Aiguo SONG, Liyue FU, Multi-dimensional force sensor for haptic interaction: a review Virtual Reality & Intelligent Hardware 2019, 1(2): 121-135

27. Wenmin ZHU, Xiumin FAN, Yanxin ZHANG, Applications and research trends of digital human models in the manufacturing industry Virtual Reality & Intelligent Hardware 2019, 1(6): 558-579

28. Mohammad Mahmudul ALAM, S. M. Mahbubur RAHMAN, Affine transformation of virtual 3D object using 2D localization of fingertips Virtual Reality & Intelligent Hardware 2020, 2(6): 534-555

29. Yuan WEI, Dongdong GUAN, Qiuchen WANG, Xiangxian LI, Yulong BIAN, Pu QIN, Yanning XU, Chenglei YANG, Virtual fire drill system supporting co-located collaboration Virtual Reality & Intelligent Hardware 2019, 1(3): 290-302

30. Xiaoxiong FAN, Yun CAI, Yufei YANG, Tianxing XU, Yike Li, Songhai ZHANG, Fanglue ZHANG, Detection of scene-irrelevant head movements via eye-head coordination information Virtual Reality & Intelligent Hardware 2021, 3(6): 501-514

31. Haochen HU, Yue LIU, Kang YUE, Yongtian WANG, Navigation in virtual and real environment using brain computer interface:a progress report Virtual Reality & Intelligent Hardware 2022, 4(2): 89-114