Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(6): 451-469

Published Date:2021-12-20 DOI: 10.1016/j.vrih.2021.06.003

Effects of virtual environment and self-representations on perception and physical performance in redirected jumping

Abstract

Background
Redirected jumping (RDJ) allows users to explore virtual environments (VEs) naturally by scaling a small real-world jump to a larger virtual jump with virtual camera motion manipulation, thereby addressing the problem of limited physical space in VR applications. Previous RDJ studies have mainly focused on detection threshold estimation. However, the effect VE or self-representation (SR) has on the perception or performance of RDJs remains unclear.
Methods
In this paper, we report experiments to measure the perception (detection thresholds for gains, presence, embodiment, intrinsic motivation, and cybersickness) and physical performance (heart rate intensity, preparation time, and actual jumping distance) of redirected forward jumping under six different combinations of VE (low and high visual richness) and SRs (invisible, shoes, and human-like).
Results
Our results indicated that the detection threshold ranges for horizontal translation gains were significantly smaller in the VE with high rather than low visual richness. When different SRs were applied, our results did not suggest significant differences in detection thresholds, but it did report longer actual jumping distances in the invisible body case compared with the other two SRs. In the high visual richness VE, the preparation time for jumping with a human-like avatar was significantly longer than that with other SRs. Finally, some correlations were found between perception and physical performance measures.
Conclusions
All these findings suggest that both VE and SRs influence users' perception and performance in RDJ and must be considered when designing locomotion techniques.

Keyword

Virtual reality ; Virtual locomotion ; Redirected jumping

Cite this article

Yijun LI, Miao WANG, Derong JIN, Frank STEINICKE, Qinping ZHAO. Effects of virtual environment and self-representations on perception and physical performance in redirected jumping. Virtual Reality & Intelligent Hardware, 2021, 3(6): 451-469 DOI:10.1016/j.vrih.2021.06.003

References

1. Steinicke F, Visell Y, Campos J, Lécuyer A. Human walking in virtual environments. New York: Springer, 2013

2. Interrante V, Ries B, Anderson L. Seven league boots: a new metaphor for augmented locomotion through moderately large scale immersive virtual environments. In: 2007 IEEE Symposium on 3D User Interfaces. Charlotte, NC, USA, IEEE, 2007 DOI:10.1109/3dui.2007.340791

3. Slater M, Steed A, Usoh M. The virtual treadmill: A naturalistic metaphor for navigation in immersive virtual environments. In: Eurographics. Vienna: Springer Vienna, 1995, 135–148 DOI:10.1007/978-3-7091-9433-1_12

4. Nilsson N C, Serafin S, Laursen M H, Pedersen K S, Sikström E, Nordahl R. Tapping-In-Place: Increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI). Orlando, FL, USA, IEEE, 2013, 31–38 DOI:10.1109/3dui.2013.6550193

5. Coomer N, Bullard S, Clinton W, Williams-Sanders B. Evaluating the effects of four VR locomotion methods: joystick, arm-cycling, point-tugging, and teleporting. In: Proceedings of the 15th ACM Symposium on Applied Perception. 2018, 1–8 DOI:10.1145/3225153.3225175

6. Langbehn E, Lubos P, Steinicke F. Evaluation of locomotion techniques for room-scale VR: joystick, teleportation, and redirected walking. In: Proceedings of the Virtual Reality International Conference―Laval Virtual. Laval, France, New York, NY, USA, ACM, 2018, 1–9 DOI:10.1145/3234253.3234291

7. Bozgeyikli E, Raij A, Katkoori S, Dubey R. Point & teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play. Austin, Texas, USA, New York, NY, USA, ACM, 2016, 205–216 DOI:10.1145/2967934.2968105

8. Razzaque S, Kohn Z, Whitton M C. Redirected walking. Chapel Hill: University of North Carolina at Chapel Hill. 2005, 4914-4914

9. Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M. Estimation of detection thresholds for redirected walking techniques. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(1): 17–27 DOI:10.1109/tvcg.2009.62

10. Sarupuri B, Hoermann S, Steinicke F, Lindeman R W. Triggerwalking: a biomechanically-inspired locomotion user interface for efficient realistic virtual walking. In: Proceedings of the 5th Symposium on Spatial User Interaction. Brighton, United Kingdom, New York, NY, USA, ACM, 2017, 138–147 DOI:10.1145/3131277.3132177

11. Souman J L, Giordano P R, Schwaiger M, Frissen I. CyberWalk: Enabling unconstrained omnidirectional walking through virtual environments. ACM Transactions on Applied Perception (TAP), 2008, 8(4): 1–22

12. Pyo S H, Lee H S, Phu B M, Park S J, Yoon J W. Development of an fast-omnidirectional treadmill (f-odt) for immersive locomotion interface. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, 760–766

13. Wang Z Y, Wei H K, Zhang K J, Xie L P. Real walking in place: HEX-CORE-PROTOTYPE omnidirectional treadmill. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 382–387 DOI:10.1109/vr46266.2020.00058

14. Nilsson N C, Peck T, Bruder G, Hodgson E, Serafin S, Whitton M, Steinicke F, Rosenberg E S. 15 years of research on redirected walking in immersive virtual environments. IEEE Computer Graphics and Applications, 2018, 38(2): 44–56 DOI:10.1109/mcg.2018.111125628

15. Hayashi D, Fujita K, Takashima K, Lindeman R W, Kitamura Y. Redirected jumping: imperceptibly manipulating jump motions in virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Osaka, Japan, IEEE, 2019, 386–394 DOI:10.1109/vr.2019.8797989

16. Kruse L, Langbehn E, Steinicke F. I can see on my feet while walking: Sensitivity to translation gains with visible feet. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Tuebingen/Reutlingen, Germany, IEEE, 2018, 305–312 DOI:10.1109/VR.2018.8446216

17. Usoh M, Arthur K, Whitton MC, Bastos R, Steed A, Slater M, BrooksJr , F. P. Walking##大于## walking-in-place##大于## flying, in virtual environments. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM, 1999, 359–364 DOI:10.1145/311535.311589

18. Williams B, Narasimham G, McNamara T P, Carr T H, Rieser J J, Bodenheimer B. Updating orientation in large virtual environments using scaled translational gain. In: Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization. ACM, 2006, 21–28 DOI:10.1145/1140491.1140495

19. Sun Q, Patney A, Wei L Y, Shapira O, Lu J, Asente P, Zhu S, McGuire M, Luebke D, Kaufman A. Towards virtual reality infinite walking: dynamic saccadic redirection. ACM Transactions on Graphics (TOG), 2018, 37(4): 1–13 DOI:10.1145/3197517.3201294

20. Bachmann E R, Hodgson E, Hoffbauer C, Messinger J. Multi-user redirected walking and resetting using artificial potential fields. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(5): 2022–2031 DOI:10.1109/tvcg.2019.2898764

21. Dong T, Chen X, Song Y, Ying W, Fan J. Dynamic artificial potential fields for multi-user redirected walking. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2020,146–154 DOI:10.1109/VR46266.2020.00033

22. Dong Z C, Fu X M, Zhang C, Wu K, Liu L G. Smooth assembled mappings for large-scale real walking. ACM Transactions on Graphics, 2017, 36(6): 1–13 DOI:10.1145/3130800.3130893

23. Dong ZC, Fu X M, Yang Z, Liu L. Redirected smooth mappings for multiuser real walking in virtual reality. ACM Transactions on Graphics (TOG), 2019, 38(5):1–17 DOI:10.1145/3345554

24. Suma E A, Clark S, Krum D, Finkelstein S, Bolas M, Warte Z. Leveraging change blindness for redirection in virtual environments. In: 2011 IEEE Virtual Reality Conference. Singapore, IEEE, 2011, 159–166 DOI:10.1109/vr.2011.5759455

25. Suma E A, Lipps Z, Finkelstein S, Krum D M, Bolas M. Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(4): 555–564 DOI:10.1109/tvcg.2012.47

26. Sun Q, Wei L Y, Kaufman A. Mapping virtual and physical reality. ACM Transactions on Graphics, 2016, 35(4): 1–12 DOI:10.1145/2897824.2925883

27. Williams N L, Peck T C. Estimation of rotation gain thresholds considering FOV, gender, and distractors. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(11): 3158–3168 DOI:10.1109/tvcg.2019.2932213

28. Matsumoto K, Langbehn E, Narumi T, Steinicke F. Detection thresholds for vertical gains in VR and drone-based telepresence systems. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 101–107 DOI:10.1109/vr46266.2020.00028

29. Lee D Y, Cho Y H, Lee I K. Real-time optimal planning for redirected walking using deep q-learning. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Osaka, Japan, IEEE, 2019, 63–71 DOI:10.1109/VR.2019.8798121

30. Lee D Y, Cho Y H, Min D H, Lee I K. Optimal planning for redirected walking based on reinforcement learning in multi-user environment with irregularly shaped physical space. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Atlanta, GA, USA, IEEE, 2020, 155–163 DOI:10.1109/VR46266.2020.00034

31. Strauss R R, Ramanujan R, Becker A, Peck T C. A steering algorithm for redirected walking using reinforcement learning. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(5): 1955–1963 DOI:10.1109/tvcg.2020.2973060

32. Langbehn E, Lubos P, Bruder G, Steinicke F. Bending the curve: sensitivity to bending of curved paths and application in room-scale VR. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4): 1389–1398 DOI:10.1109/tvcg.2017.2657220

33. Reimer D, Langbehn E, Kaufmann H, Scherzer D. The influence of full-body representation on translation and curvature gain. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). Atlanta, GA, USA, IEEE, 2020, 154–159 DOI:10.1109/VRW50115.2020.00032

34. Bolte B, Steinicke F, Bruder G. The jumper metaphor: an effective navigation technique for immersive display setups. In: Proceedings of Virtual Reality International Conference. 2011, 2, 1

35. Yoshida N, Ueno K, Naka Y, Yonezawa T. Virtual ski jump: illusion of slide down the slope and gliding. In: SIGGRAPH ASIA 2016 Posters. 2016 DOI:10.1145/3005274.3005282

36. Kim M, Cho S, Tran T Q, Kim S P, Kwon O, Han J J. Scaled jump in gravity-reduced virtual environments. 2017, 23(4): 1360–1368 DOI:10.1109/TVCG.2017.2657139

37. Kang HY, Lee G, Kang DS, Kwon O, Cho JY, Choi HJ, Han JH. Jumping Further: Forward Jumps in a Gravity-reduced immersive virtual environment. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Osaka, Japan, IEEE, 2019, 699–707 DOI:10.1109/VR.2019.8798251

38. Sasaki T, Liu K-H, Hasegawa T, Hiyama A, Inami M. Virtual super-leaping: Immersive extreme jumping in VR. In: Proceedings of the 10th Augmented Human International Conference. ACM, 2019, 1–8 DOI:10.1145/3311823.3311861

39. Jung S, Borst C W, Hoermann S, Lindeman R W. Redirected jumping: Perceptual detection rates for curvature gains. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. ACM, 2019, 1085–1092 DOI:10.1145/3332165.3347868

40. Wolf D, Rogers K, Kunder C, Rukzio E. Jumpvr: Jump-based locomotion augmentation for virtual reality. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. New York, NY, United States, ACM, 2020, 1–12 DOI:10.1145/3313831.3376243

41. Witmer B G, Singer M J. Measuring presence in virtual environments: a presence questionnaire. Presence, 1998, 7(3): 225–240 DOI:10.1162/105474698565686

42. Regenbrecht H T, Schubert T W, Friedmann F. Measuring the sense of presence and its relations to fear of heights in virtual environments. International Journal of Human-Computer Interaction, 1998, 10(3): 233–249 DOI:10.1207/s15327590ijhc1003_2

43. Sanchez-Vives M V, Slater M. From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 2005, 6(4): 332–339 DOI:10.1038/nrn1651

44. Usoh M, Catena E, Arman S, Slater M J P T, Environments V. Using presence questionnaires in reality. 2000, 9(5): 497-503 DOI:10.1162/105474600566989

45. Schubert T, Friedmann F, Regenbrecht H. The experience of presence: factor analytic insights. Presence, 2001, 10(3): 266–281 DOI:10.1162/105474601300343603

46. Steed A, Pan Y, Zisch F, Steptoe W. The impact of a self-avatar on cognitive load in immersive virtual reality. In: 2016 IEEE virtual reality (VR). Greenville, SC, USA, IEEE, 2016, 67–76 DOI:10.1109/VR.2016.7504689

47. Jung S, Wisniewski P J, Hughes C E. In limbo: The effect of gradual visual transition between real and virtual on virtual body ownership illusion and presence. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Tuebingen/Reutlingen, Germany, IEEE, 2018, 267–272 DOI:10.1109/VR.2018.8447562

48. Bodenheimer B, Creem-Regehr S, Stefanucci J, Shemetova E, Thompson W B. Prism aftereffects for throwing with a self-avatar in an immersive virtual environment. In: 2017 IEEE Virtual Reality (VR). IEEE, 2017, 141–147 DOI:10.1109/VR.2017.7892241

49. Gonzalez-Franco M, Peck T C. Avatar embodiment. towards a standardized questionnaire. Frontiers in Robotics and AI, 2018, 5, 74 DOI:10.3389/frobt.2018.00074

50. Murphy D. Bodiless embodiment: a descriptive survey of avatar bodily coherence in first-wave consumer VR applications. In: 2017 IEEE Virtual Reality (VR). Los Angeles, CA, USA, IEEE, 2017, 265–266 DOI:10.1109/vr.2017.7892278

51. Murray C D, Sixsmith J. The corporeal body in virtual reality. Ethos, 1999, 27(3): 315–343 DOI:10.1525/eth.1999.27.3.315

52. Blanke O, Metzinger T. Full-body illusions and minimal phenomenal selfhood. Trends in Cognitive Sciences, 2009, 13(1), 7–13 DOI:10.1016/j.tics.2008.10.003

53. Maselli A, Slater M. The building blocks of the full body ownership illusion. Frontiers in Human Neuroscience, 2013, 7, 83 DOI:10.3389/fnhum.2013.00083

54. Peck T C, Tutar A. The impact of a self-avatar, hand collocation, and hand proximity on embodiment and stroop interference. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(5), 1964–1971 DOI:10.1109/tvcg.2020.2973061

55. Fribourg R, Argelaguet F, Lécuyer A, Hoyet L. Avatar and sense of embodiment: studying the relative preference between appearance, control and point of view. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(5): 2062–2072 DOI:10.1109/tvcg.2020.2973077

56. Karvonen J, Vuorimaa T. Heart rate and exercise intensity during sports activities. Sports Medicine, 1988, 5(5): 303–312 DOI:10.2165/00007256-198805050-00002

57. Schubert T, Friedmann F, Regenbrecht H. Igroup presence questionnaire (IPQ) overview. 2018

58. Ryan R M. Control and information in the intrapersonal sphere: an extension of cognitive evaluation theory. Journal of Personality and Social Psychology, 1982, 43(3): 450–461 DOI:10.1037/0022-3514.43.3.450

59. Kennedy R S, Lane N E, Berbaum K S, Lilienthal M G. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 1993, 3(3): 203–220 DOI:10.1207/s15327108ijap0303_3

Related

1. Xiaolong LIU, Lili WANG, Redirected jumping in virtual scenes with alleys Virtual Reality & Intelligent Hardware 2021, 3(6): 470-483

2. Yang LI, Dong WU, Jin HUANG, Feng TIAN, Hong'an WANG, Guozhong DAI, Influence of multi-modality on moving target selection in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(3): 303-315

3. Yang LI, Jin HUANG, Feng TIAN, Hong-An WANG, Guo-Zhong DAI, Gesture interaction in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(1): 84-112

4. Athirah SYAMIMI, Yiwei GONG, Ryan LIEW, VR industrial applicationsA singapore perspective Virtual Reality & Intelligent Hardware 2020, 2(5): 409-420

5. Jie GUO, Dongdong WENG, Yue LIU, Qiyong CHEN, Yongtian WANG, Analysis of teenagers' preferences and concerns regarding HMDs in education Virtual Reality & Intelligent Hardware 2021, 3(5): 369-382

6. Susu HUANG, Daqing QI, Jiabin YUAN, Huawei TU, Review of studies on target acquisition in virtual reality based on the crossing paradigm Virtual Reality & Intelligent Hardware 2019, 1(3): 251-264

7. Yukang YAN, Xin YI, Chun YU, Yuanchun SHI, Gesture-based target acquisition in virtual and augmented reality Virtual Reality & Intelligent Hardware 2019, 1(3): 276-289

8. Yuan GAO, Le XIE, A review on the application of augmented reality in craniomaxillofacial surgery Virtual Reality & Intelligent Hardware 2019, 1(1): 113-120

9. Yuan CHANG, Guo-Ping WANG, A review on image-based rendering Virtual Reality & Intelligent Hardware 2019, 1(1): 39-54

10. Shiguang QIU, Shuntao LIU, Deshuai KONG, Qichang HE, Three-dimensional virtual-real mapping of aircraft autom-atic spray operation and online simulation monitoring Virtual Reality & Intelligent Hardware 2019, 1(6): 611-621

11. Xu PENG, Zhenyu GAO, Yitong DING, Dongfeng ZHAO, Xiaoyu CHI, Study of ghost image suppression in polarized catadioptric virtual reality optical systems Virtual Reality & Intelligent Hardware 2020, 2(1): 70-78

12. Zhiming HU, Sheng LI, Meng GAI, Temporal continuity of visual attention for future gaze prediction in immersive virtual reality Virtual Reality & Intelligent Hardware 2020, 2(2): 142-152

13. Lihui HUANG, Siti Faatihah Binte Mohd TAIB, Ryan Aung BA, Zhe An GOH, Mengshan XU, Virtual reality research and development in NTU Virtual Reality & Intelligent Hardware 2020, 2(5): 394-408

14. Stéphanie PHILIPPE, Alexis D. SOUCHET, Petros LAMERAS, Panagiotis PETRIDIS, Julien CAPORAL, Gildas COLDEBOEUF, Hadrien DUZAN, Multimodal teaching, learning and training in virtual reality: a review and case study Virtual Reality & Intelligent Hardware 2020, 2(5): 421-442

15. Jia Ming LEE, Xinxing XIA, Clemen OW, Felix CHUA, Yunqing GUAN, VEGO: A novel design towards customizable and adjustable head-mounted display for VR Virtual Reality & Intelligent Hardware 2020, 2(5): 443-453

16. Jingcheng QIAN, Yancong MA, Zhigeng PAN, Xubo YANG, Effects of Virtual-real fusion on immersion, presence, and learning performance in laboratory education Virtual Reality & Intelligent Hardware 2020, 2(6): 569-584

17. Hengwei XU, Siru LI, Wenpeng SONG, Jiajun SUN, Xinli WU, Xiaoqi WANG, Wenzhen YANG, Zhigeng PAN, Abdennour EI RHALIBI, Thermal perception method of virtual chemistry experiments Virtual Reality & Intelligent Hardware 2020, 2(4): 305-315

18. TJ MATTHEWS, Feng TIAN, Tom DOLBY, Interaction design for paediatric emergency VR training Virtual Reality & Intelligent Hardware 2020, 2(4): 330-344

19. Hongxin ZHANG, Jin ZHANG, Xue YIN, Kan ZHOU, Zhigeng PAN, Abdennour EI RHALIBI, Cloud-to-end rendering and storage management for virtual reality in experimental education Virtual Reality & Intelligent Hardware 2020, 2(4): 368-380

20. Xiang ZHOU, Liyu TANG, Ding LIN, Wei HAN, Virtual & augmented reality for biological microscope in experiment education Virtual Reality & Intelligent Hardware 2020, 2(4): 316-329

21. Haoyu WANG, Jianhuang WU, A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction Virtual Reality & Intelligent Hardware 2021, 3(4): 302-314

22. Na ZHANG, Liwen TAN, Fengying LI, Bing HAN, Yifa XU, Development and application of digital assistive teaching system for anatomy Virtual Reality & Intelligent Hardware 2021, 3(4): 315-335

23. Daniel VANKOV, David JANKOVSZKY, Effects of using headset-delivered virtual reality in road safety research: A systematic review of empirical studies Virtual Reality & Intelligent Hardware 2021, 3(5): 351-368

24. Liming WANG, Xianwei CHEN, Tianyang DONG, Jing FAN, Virtual climbing: An immersive upslope walking system using passive haptics Virtual Reality & Intelligent Hardware 2021, 3(6): 435-450

25. Dangxiao WANG, Yuan GUO, Shiyi LIU, Yuru ZHANG, Weiliang XU, Jing XIAO, Haptic display for virtual reality: progress and challenges Virtual Reality & Intelligent Hardware 2019, 1(2): 136-162

26. Aiguo SONG, Liyue FU, Multi-dimensional force sensor for haptic interaction: a review Virtual Reality & Intelligent Hardware 2019, 1(2): 121-135

27. Wenmin ZHU, Xiumin FAN, Yanxin ZHANG, Applications and research trends of digital human models in the manufacturing industry Virtual Reality & Intelligent Hardware 2019, 1(6): 558-579

28. Mohammad Mahmudul ALAM, S. M. Mahbubur RAHMAN, Affine transformation of virtual 3D object using 2D localization of fingertips Virtual Reality & Intelligent Hardware 2020, 2(6): 534-555

29. Yuan WEI, Dongdong GUAN, Qiuchen WANG, Xiangxian LI, Yulong BIAN, Pu QIN, Yanning XU, Chenglei YANG, Virtual fire drill system supporting co-located collaboration Virtual Reality & Intelligent Hardware 2019, 1(3): 290-302

30. Xiaoxiong FAN, Yun CAI, Yufei YANG, Tianxing XU, Yike Li, Songhai ZHANG, Fanglue ZHANG, Detection of scene-irrelevant head movements via eye-head coordination information Virtual Reality & Intelligent Hardware 2021, 3(6): 501-514

31. Haochen HU, Yue LIU, Kang YUE, Yongtian WANG, Navigation in virtual and real environment using brain computer interface:a progress report Virtual Reality & Intelligent Hardware 2022, 4(2): 89-114