Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(3): 183-206

Published Date:2021-6-20 DOI: 10.1016/j.vrih.2021.05.001

Review of dynamic gesture recognition

Abstract

In recent years, gesture recognition has been widely used in the fields of intelligent driving, virtual reality, and human-computer interaction. With the development of artificial intelligence, deep learning has achieved remarkable success in computer vision. To help researchers better understanding the development status of gesture recognition in video, this article provides a detailed survey of the latest developments in gesture recognition technology for videos based on deep learning. The reviewed methods are broadly categorized into three groups based on the type of neural networks used for recognition: two-stream convolutional neural networks, 3D convolutional neural networks, and Long-short Term Memory (LSTM) networks. In this review, we discuss the advantages and limitations of existing technologies, focusing on the feature extraction method of the spatiotemporal structure information in a video sequence, and consider future research directions.

Keyword

Video-based gesture recognition ; Deep learning ; Convolutional neural networks ; Human-computer interaction

Cite this article

Yuanyuan SHI, Yunan LI, Xiaolong FU, Kaibin MIAO, Qiguang MIAO. Review of dynamic gesture recognition. Virtual Reality & Intelligent Hardware, 2021, 3(3): 183-206 DOI:10.1016/j.vrih.2021.05.001

References

1. Card S K, Moran T P, Newell A. The psychology of human-computer interaction. Hillsdale, New Jersey, Lawrence Erlbaum Associates, 1983

2. Pollick A S, de Waal F B M. Ape gestures and language evolution. PNAS, 2007, 104(19): 8184–8189 DOI:10.1073/pnas.0702624104

3. Chen L, Ma N, Wang P, Li J H, Wang P F, Pang G L, Shi X J. Survey of pedestrian action recognition techniques for autonomous driving. Tsinghua Science and Technology, 2020, 25(4): 458–470 DOI:10.26599/tst.2019.9010018

4. D'Sa A G, Prasad B G. A survey on vision based activity recognition, its applications and challenges. In: 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). Gangtok, India, IEEE, 2019, 1–8 DOI:10.1109/icaccp.2019.8882896

5. Devi M, Saharia S, Bhattacharyya D K. Dance gesture recognition: a survey. International Journal of Computer Applications, 2015, 122(5): 19–26 DOI:10.5120/21696-4803

6. Wang Z J, Hou Y S, Jiang K K, Dou W W, Zhang C M, Huang Z H, Guo Y J. Hand gesture recognition based on active ultrasonic sensing of smartphone: a survey. IEEE Access, 2019, 7: 111897–111922 DOI:10.1109/access.2019.2933987

7. Xia Z W, Lei Q J, Yang Y, Zhang H D, He Y, Wang W J, Huang M H. Vision-based hand gesture recognition for human-robot collaboration: a survey. In: 2019 5th International Conference on Control, Automation and Robotics (ICCAR). Beijing, China, IEEE, 2019, 198–205 DOI:10.1109/iccar.2019.8813509

8. Martínez B M, Modolo D, Xiong Y J, Tighe J. Action recognition with spatial-temporal discriminative filter banks. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), IEEE, 2019, 5481–5490 DOI:10.1109/iccv.2019.00558

9. Diba A, Sharma V, Van Gool L, Stiefelhagen R. DynamoNet: dynamic action and motion network. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), IEEE, 2019, 6191–6200 DOI:10.1109/iccv.2019.00629

10. Feichtenhofer C, Fan H Q, Malik J, He K M. SlowFast networks for video recognition. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), IEEE, 2019, 6201–6210 DOI:10.1109/iccv.2019.00630

11. Bhowmick S, Talukdar A K, Sarma K K. Continuous hand gesture recognition for English alphabets. In: 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN). Noida, India, IEEE, 2015, 443–446 DOI:10.1109/spin.2015.7095264

12. Lu Z Y, Chen X, Li Q, Zhang X, Zhou P. A hand gesture recognition framework and wearable gesture-based interaction prototype for mobile devices. IEEE Transactions on Human-Machine Systems, 2014, 44(2): 293–299 DOI:10.1109/thms.2014.2302794

13. Zhang Y, Harrison C. Tomo: wearable, low-cost electrical impedance tomography for hand gesture recognition. UIST'15: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. 2015, 167–173 DOI:10.1145/2807442.2807480

14. Bobick A F, Davis J W. The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257–267 DOI:10.1109/34.910878

15. Konečný J, Hagara M. One-shot-learning gesture recognition using HOG-HOF features. In: Gesture Recognition. Cham: Springer International Publishing. 2017, 365–385 DOI:10.1007/978-3-319-57021-1_12

16. Donahue J, Hendricks L A, Guadarrama S, Rohrbach M, Venugopalan S, Darrell T, Saenko K. Long-term recurrent convolutional networks for visual recognition and description. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, IEEE, 2015, 2625–2634 DOI:10.1109/cvpr.2015.7298878

17. Huang Y J, Yang X C, Li Y F, Zhou D L, He K S, Liu H H. Ultrasound-based sensing models for finger motion classification. IEEE Journal of Biomedical and Health Informatics, 2018, 22(5): 1395–1405 DOI:10.1109/jbhi.2017.2766249

18. Yang X C, Sun X L, Zhou D L, Li Y F, Liu H H. Towards wearable A-mode ultrasound sensing for real-time finger motion recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(6): 1199–1208 DOI:10.1109/tnsre.2018.2829913

19. Manawadu U E, Kamezaki M, Ishikawa M, Kawano T, Sugano S. A hand gesture based driver-vehicle interface to control lateral and longitudinal motions of an autonomous vehicle. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Budapest, Hungary, IEEE, 2016, 001785–001790 DOI:10.1109/smc.2016.7844497

20. Kim J, Jung H, Kang M, Chung K. 3D human-gesture interface for fighting games using motion recognition sensor. Wireless Personal Communications, 2016, 89(3): 927–940 DOI:10.1007/s11277-016-3294-9

21. Yuan X, Dai S, Fang Y Y. A natural immersive closed-loop interaction method for human-robot “rock-paper-scissors” game. Recent Trends in Intelligent Computing, Communication and Devices, 2020, 103–111 DOI:10.1007/978-981-13-9406-5_14

22. Lichtenauer J F, Hendriks E A, Reinders M J T. Sign language recognition by combining statistical DTW and independent classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11): 2040–2046 DOI:10.1109/tpami.2008.123

23. Cooper H, Ong E, Pugeault N, Bowden R. Sign language recognition using sub-units. Journal of Machine Learning Research, 2012, 2205–2231

24. Yang D, Lim J K, Choi Y. Early childhood education by hand gesture recognition using a smartphone based robot. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication. Edinburgh, UK, IEEE, 2014, 987–992 DOI:10.1109/roman.2014.6926381

25. Ismail Fawaz H, Forestier G, Weber J, Petitjean F, Idoumghar L, Muller P A. Automatic alignment of surgical videos using kinematic data. In: Artificial Intelligence in Medicine. Cham: Springer International Publishing, 2019, 104–113 DOI:10.1007/978-3-030-21642-9_14

26. Lu X Z, Shen J, Perugini S, Yang J J. An immersive telepresence system using RGB-D sensors and head mounted display. In: 2015 IEEE International Symposium on Multimedia (ISM). Miami, FL, USA, IEEE, 2015, 453–458 DOI:10.1109/ism.2015.108

27. Cheng K, Ye N, Malekian R, Wang R C. In-air gesture interaction: real time hand posture recognition using passive RFID tags. IEEE Access, 2019, 7: 94460–94472 DOI:10.1109/access.2019.2928318

28. Trong K N, Bui H, Pham C. Recognizing hand gestures for controlling home appliances with mobile sensors. In: 2019 11th International Conference on Knowledge and Systems Engineering (KSE). Da Nang, Vietnam, IEEE, 2019, 1–7 DOI:10.1109/kse.2019.8919419

29. Escalera S, Athitsos V, Guyon I. Challenges in multimodal gesture recognition. Gesture recognition, 2017, 1–60

30. D’Orazio T, Marani R, Renò V, Cicirelli G. Recent trends in gesture recognition: how depth data has improved classical approaches. Image and Vision Computing, 2016, 52: 56–72 DOI:10.1016/j.imavis.2016.05.007

31. Nyaga C, Wario R. A Review of Sign Language Hand Gesture Recognition Algorithms. In: Advances in Artificial Intelligence, Software and Systems Engineering. Cham, Springer International Publishing, 2021, 207–216

32. Rautaray S S, Agrawal A. Vision based hand gesture recognition for human computer interaction: a survey. Artificial Intelligence Review, 2015, 43(1): 1–54 DOI:10.1007/s10462-012-9356-9

33. Cheng H, Yang L, Liu Z C. Survey on 3D hand gesture recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(9): 1659–1673 DOI:10.1109/tcsvt.2015.2469551

34. Khan R Z, Ibraheem N A. Survey on gesture recognition for hand image postures. Computer and Information Science, 2012, 5(3): 110–121 DOI:10.5539/cis.v5n3p110

35. Devi M, Saharia S, Bhattacharyya D K. Dance gesture recognition: a survey. International Journal of Computer Applications, 2015, 122(5): 19–26 DOI:10.5120/21696-4803

36. Gao Z M, Wang P C, Wang H G, Xu M L, Li W Q. A review of dynamic maps for 3D human motion recognition using ConvNets and its improvement. Neural Processing Letters, 2020, 52(2): 1501–1515 DOI:10.1007/s11063-020-10320-w

37. Sun J H, Ji T T, Zhang S B, Yang J K, Ji G R. Research on the hand gesture recognition based on deep learning. In: 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Hangzhou, China, IEEE, 2018, 1–4 DOI:10.1109/isape.2018.8634348

38. Jiang D, Li G F, Sun Y, Kong J Y, Tao B, Chen D S. Grip strength forecast and rehabilitative guidance based on adaptive neural fuzzy inference system using sEMG. Personal and Ubiquitous Computing, 2019, 1–10 DOI:10.1007/s00779-019-01268-3

39. Guo X, Xu W, Tang W Q, Wen C. Research on optimization of static gesture recognition based on convolution neural network. In: 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). Hohhot, China, IEEE, 2019, 398–3982 DOI:10.1109/icmcce48743.2019.00095

40. Sharma P, Anand R S. Depth data and fusion of feature descriptors for static gesture recognition. IET Image Processing, 2020, 14(5): 909–920 DOI:10.1049/iet-ipr.2019.0230

41. Jiang D, Li G F, Sun Y, Kong J Y, Tao B. Gesture recognition based on skeletonization algorithm and CNN with ASL database. Multimedia Tools and Applications, 2019, 78(21): 29953–29970 DOI:10.1007/s11042-018-6748-0

42. Lai K, Yanushkevich S N. CNN+RNN depth and skeleton based dynamic hand gesture recognition. In: 2018 24th International Conference on Pattern Recognition (ICPR). Beijing, China, IEEE, 2018, 3451–3456 DOI:10.1109/icpr.2018.8545718

43. Kajan S, Goga J, Zsíros O. Comparison of algorithms for dynamic hand gesture recognition. In: 2020 Cybernetics & Informatics (K&I). Velke Karlovice, Czech Republic, IEEE, 2020, 1–5 DOI:10.1109/ki48306.2020.9039850

44. Li G F, Wu H, Jiang G Z, Xu S, Liu H H. Dynamic gesture recognition in the Internet of Things. IEEE Access, 2018, 7: 23713–23724 DOI:10.1109/access.2018.2887223

45. Materzynska J, Berger G, Bax I, Memisevic R. The jester dataset: a large-scale video dataset of human gestures. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South), IEEE, 2019, 2874–2882 DOI:10.1109/iccvw.2019.00349

46. Escalera S, Baró X, Gonzàlez J, Bautista M A, Madadi M, Reyes M, Ponce-López V, Escalante H J, Shotton J, Guyon I. ChaLearn Looking at People Challenge 2014: Dataset and Results. In: Computer Vision-ECCV 2014 Workshops. Cham, Springer International Publishing, 2015, 45–47

47. Wan J, Li S Z, Zhao Y B, Zhou S, Guyon I, Escalera S. ChaLearn looking at people RGB-D isolated and continuous datasets for gesture recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Las Vegas, NV, USA, IEEE, 2016, 761–769 DOI:10.1109/cvprw.2016.100

48. Amir A, Taba B, Berg D, Melano T, McKinstry J, Di Nolfo C, Nayak T, Andreopoulos A, Garreau G, Mendoza M, Kusnitz J, Debole M, Esser S, Delbruck T, Flickner M, Modha D. A low power, fully event-based gesture recognition system. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 7388–7397 DOI:10.1109/cvpr.2017.781

49. Liu L, Shao L. Learning discriminative representations from RGB-D video data. In: Proceedings of the Twenty-Third international joint conference on Artificial Intelligence. Beijing, China, AAAI Press, 2013, 1493–1500

50. Zhang Y F, Cao C Q, Cheng J, Lu H Q. EgoGesture: a new dataset and benchmark for egocentric hand gesture recognition. IEEE Transactions on Multimedia, 2018, 20(5): 1038–1050 DOI:10.1109/tmm.2018.2808769

51. Jiang D, Zheng Z J, Li G F, Sun Y, Kong J Y, Jiang G Z, Xiong H G, Tao B, Xu S, Yu H, Liu H H, Ju Z J. Gesture recognition based on binocular vision. Cluster Computing, 2019, 22(6): 13261–13271 DOI:10.1007/s10586-018-1844-5

52. Wang H G, Wang P C, Song Z J, Li W Q. Large-scale multimodal gesture recognition using heterogeneous networks. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Venice, Italy, IEEE, 2017, 3129–3137 DOI:10.1109/iccvw.2017.370

53. Zhu G M, Zhang L, Shen P Y, Song J. Multimodal gesture recognition using 3D convolution and convolutional LSTM. IEEE Access, 2017, 5: 4517–4524 DOI:10.1109/access.2017.2684186

54. Köpüklü O, Köse N, Rigoll G. Motion fused frames: data level fusion strategy for hand gesture recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT, USA, IEEE, 2018, 2184–21848 DOI:10.1109/cvprw.2018.00284

55. Li Y N, Miao Q G, Tian K, Fan Y Y, Xu X, Li R, Song J F. Large-scale gesture recognition with a fusion of RGB-D data based on the C3D model. In: 2016 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico, IEEE, 2016, 25–30 DOI:10.1109/icpr.2016.7899602

56. Molchanov P, Yang X D, Gupta S, Kim K, Tyree S, Kautz J. Online detection and classification of dynamic hand gestures with recurrent 3D convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, IEEE, 2016, 4207–4215 DOI:10.1109/cvpr.2016.456

57. Zhang L, Zhu G M, Shen P Y, Song J, Shah S A, Bennamoun M. Learning spatiotemporal features using 3DCNN and convolutional LSTM for gesture recognition. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Venice, Italy, IEEE, 2017, 3120–3128 DOI:10.1109/iccvw.2017.369

58. Miao Q G, Li Y N, Ouyang W L, Ma Z X, Xu X, Shi W K, Cao X C. Multimodal gesture recognition based on the ResC3D network. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Venice, Italy, IEEE, 2017, 3047–3055 DOI:10.1109/iccvw.2017.360

59. Li Y N, Miao Q G, Qi X D, Ma Z X, Ouyang W L. A spatiotemporal attention-based ResC3D model for large-scale gesture recognition. Machine Vision and Applications, 2019, 30(5): 875–888 DOI:10.1007/s00138-018-0996-x

60. Chai X J, Liu Z P, Yin F, Liu Z, Chen X L. Two streams recurrent neural networks for large-scale continuous gesture recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico, IEEE, 2016, 31–36 DOI:10.1109/icpr.2016.7899603

61. Sydney, Australia, NewYork, ACMPress, 2013 DOI:10.1145/2522848.2532589

62. Narayana P, Beveridge J R, Draper B A. Gesture recognition: focus on the hands. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 5235–5244 DOI:10.1109/cvpr.2018.00549

63. Neverova N, Wolf C, Taylor G, Nebout F. ModDrop: adaptive multi-modal gesture recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(8): 1692–1706 DOI:10.1109/tpami.2015.2461544

64. Zhu G M, Zhang L, Mei L, Shao J, Song J, Shen P Y. Large-scale Isolated Gesture Recognition using pyramidal 3D convolutional networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico, IEEE, 2016,19–24 DOI:10.1109/icpr.2016.7899601

65. Wan J, Li S Z, Zhao Y B, Zhou S, Guyon I, Escalera S. ChaLearn looking at people RGB-D isolated and continuous datasets for gesture recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Las Vegas, NV, USA, IEEE, 2016, 761–769 DOI:10.1109/cvprw.2016.100

66. Wang P C, Li W Q, Liu S, Gao Z M, Tang C, Ogunbona P. Large-scale isolated gesture recognition using convolutional neural networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico, IEEE, 2016, 7–12 DOI:10.1109/icpr.2016.7899599

67. Zhan F. Hand gesture recognition with convolution neural networks. In: 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). Los Angeles, CA, USA, IEEE, 2019, 295–298 DOI:10.1109/iri.2019.00054

68. Du T, Ren X M, Li H C. Gesture recognition method based on deep learning. In: 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Nanjing, China, IEEE, 2018, 782–787 DOI:10.1109/yac.2018.8406477

69. Hong J Y, Park S H, Baek J G. Segmented dynamic time warping based signal pattern classification. In: 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). New York, NY, USA, IEEE, 2019, 263–265 DOI:10.1109/cse/euc.2019.00058

70. Plouffe G, Cretu A M. Static and dynamic hand gesture recognition in depth data using dynamic time warping. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 305–316 DOI:10.1109/tim.2015.2498560

71. Fine S, Singer Y, Tishby N. The hierarchical hidden Markov model: analysis and applications. Machine Learning, 1998, 32(1): 41–62 DOI:10.1023/a:1007469218079

72. Haid M, Budaker B, Geiger M, Husfeldt D, Hartmann M, Berezowski N. Inertial-based gesture recognition for artificial intelligent cockpit control using hidden Markov models. In: 2019 IEEE International Conference on Consumer Electronics (ICCE). Las Vegas, NV, USA, IEEE, 2019, 1–4 DOI:10.1109/icce.2019.8662036

73. Corradini A. Dynamic time warping for off-line recognition of a small gesture vocabulary. In: Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems. Vancouver, BC, Canada, IEEE, 2001, 82–89 DOI:10.1109/ratfg.2001.938914

74. Saha S, Lahiri R, Konar A, Banerjee B, Nagar A K. HMM-based gesture recognition system using kinect sensor for improvised human-computer interaction. In: 2017 International Joint Conference on Neural Networks (IJCNN). Anchorage, AK, USA, IEEE, 2017, 2776–2783 DOI:10.1109/ijcnn.2017.7966198

75. Yang Z, Li Y, Chen W D, Zheng Y. Dynamic hand gesture recognition using hidden Markov models. In: 2012 7th International Conference on Computer Science & Education (ICCSE). Melbourne, VIC, Australia, IEEE, 2012, 360–365 DOI:10.1109/iccse.2012.6295092

76. Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT Press, 2012

77. Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. 2014

78. Wang L M, Xiong Y J, Wang Z, Qiao Y, Lin D H, Tang X O, van Gool L. Temporal segment networks: towards good practices for deep action recognition. In: Computer Vision–ECCV 2016. Cham: Springer International Publishing, 2016, 20–36 DOI:10.1007/978-3-319-46484-8_2

79. Feichtenhofer C, Pinz A, Zisserman A. Convolutional two-stream network fusion for video action recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, IEEE, 2016, 1933–1941 DOI:10.1109/cvpr.2016.213

80. Zhu Y, Lan Z Z, Newsam S, Hauptmann A. Hidden two-stream convolutional networks for action recognition. In: Computer Vision–ACCV 2018. Cham: Springer International Publishing, 2019, 363–378 DOI:10.1007/978-3-030-20893-6_23

81. Wu D, Pigou L, Kindermans P J, Le N D H, Shao L, Dambre J, Odobez J M. Deep dynamic neural networks for multimodal gesture segmentation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(8): 1583–1597 DOI:10.1109/tpami.2016.2537340

82. Xu P. A real-time hand gesture recognition and human-computer interaction system. 2017

83. Pigou L, Dieleman S, Kindermans P J, Schrauwen B. Sign language recognition using convolutional neural networks. In: Computer Vision-ECCV 2014 Workshops. Cham: Springer International Publishing, 2015, 572–578 DOI:10.1007/978-3-319-16178-5_40

84. Soomro K, Zamir A R, Shah M. UCF101: a dataset of 101 human actions classes from videos in the wild. 2012

85. Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T. HMDB: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision. Barcelona, Spain, IEEE, 2011, 2556–2563 DOI:10.1109/iccv.2011.6126543

86. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, IEEE, 2016, 2818–2826 DOI:10.1109/cvpr.2016.308

87. Wang H S, Wang L. Modeling temporal dynamics and spatial configurations of actions using two-stream recurrent neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 3633–3642 DOI:10.1109/cvpr.2017.387

88. Tran D, Bourdev L, Fergus R, Torresani L, Paluri M. Learning spatiotemporal features with 3D convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, IEEE, 2015, 4489–4497 DOI:10.1109/iccv.2015.510

89. Tran D, Ray J, Shou Z, Chang S F, Paluri M. ConvNet architecture search for spatiotemporal feature learning. 2017

90. Pigou L, Oord A, Dieleman S, Herreweghe M, Dambre J. Beyond temporal pooling: recurrence and temporal convolutions for gesture recognition in video. International Journal of Computer Vision, 2018, 126(2/3/4): 430–439 DOI:10.1007/s11263-016-0957-7

91. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780 DOI:10.1162/neco.1997.9.8.1735

92. Zhao S Y, Yang W K, Wang Y G. A new hand segmentation method based on fully convolutional network. In: 2018 Chinese Control And Decision Conference (CCDC). Shenyang, China, IEEE, 2018, 5966–5970 DOI:10.1109/ccdc.2018.8408176

Related

1. Ziping ZHAO, Keru Wang, Zhongtian BAO, Zixing ZHANG, Nicholas CUMMINS, Shihuang SUN, Haishuai WANG, Jianhua TAO, Björn W. SCHULLER, Self-attention transfer networks for speech emotion recognition Virtual Reality & Intelligent Hardware 2021, 3(1): 43-54

2. Chongyang SUN, Weizhi NAI, Xiaoying SUN, Tactile sensitivity in ultrasonic haptics: Do different parts of hand and different rendering methods have an impact on perceptual threshold? Virtual Reality & Intelligent Hardware 2019, 1(3): 265-275

3. Egemen ERTUGRUL, Ping LI, Bin SHENG, On attaining user-friendly hand gesture interfaces to control existing GUIs Virtual Reality & Intelligent Hardware 2020, 2(2): 153-161

4. Lianyu ZHENG, Xinyu LIU, Zewu AN, Shufei LI, Renjie ZHANG, A smart assistance system for cable assembly by combining wearable augmented reality with portable visual inspection Virtual Reality & Intelligent Hardware 2020, 2(1): 12-27

5. Zhiyuan ZHANG, Yuchao DAI, Jiadai SUN, Deep learning based point cloud registration: an overview Virtual Reality & Intelligent Hardware 2020, 2(3): 222-246

6. Wanlu ZHENG, Wenming ZHENG, Yuan ZONG, Multi-scale discrepancy adversarial network for cross-corpus speech emotion recognition Virtual Reality & Intelligent Hardware 2021, 3(1): 65-75

7. Mohammad Mahmudul ALAM, S. M. Mahbubur RAHMAN, Affine transformation of virtual 3D object using 2D localization of fingertips Virtual Reality & Intelligent Hardware 2020, 2(6): 534-555

8. Zike YAN, Hongbin ZHA, Flow-based SLAM: From geometry computation to learning Virtual Reality & Intelligent Hardware 2019, 1(5): 435-460

9. Xiaojiao SONG, Jianjun ZHU, Jingfan FAN, Danni AI, Jian YANG, Topological distance-constrained feature descriptor learning model for vessel matching in coronary angiographies Virtual Reality & Intelligent Hardware 2021, 3(4): 287-301

10. Xuezhi YAN, Qiushuang WU, Xiaoying SUN, Electrostatic tactile representation in multimedia mobile terminal Virtual Reality & Intelligent Hardware 2019, 1(2): 201-218

11. Wei LYU, Zhong ZHOU, Lang CHEN, Yi ZHOU, A survey on image and video stitching Virtual Reality & Intelligent Hardware 2019, 1(1): 55-83