Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2021, 3(2): 87-104 Published Date:2021-4-20

DOI: 10.1016/j.vrih.2021.02.002

Data-driven simulation in fluids animation: A survey

Full Text: PDF (9) HTML (62)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

The field of fluid simulation is developing rapidly, and data-driven methods provide many frameworks and techniques for fluid simulation. This paper presents a survey of data-driven methods used in fluid simulation in computer graphics in recent years. First, we provide a brief introduction of physical-based fluid simulation methods based on their spatial discretization, including Lagrangian, Eulerian, and hybrid methods. The characteristics of these underlying structures and their inherent connection with data-driven methodologies are then analyzed. Subsequently, we review studies pertaining to a wide range of applications, including data-driven solvers, detail enhancement, animation synthesis, fluid control, and differentiable simulation. Finally, we discuss some related issues and potential directions in data-driven fluid simulation. We conclude that the fluid simulation combined with data-driven methods has some advantages, such as higher simulation efficiency, rich details and different pattern styles, compared with traditional methods under the same parameters. It can be seen that the data-driven fluid simulation is feasible and has broad prospects.
Keywords: Fluid simulation ; Data driven ; Machine learning

Cite this article:

Qian CHEN, Yue WANG, Hui WANG, Xubo YANG. Data-driven simulation in fluids animation: A survey. Virtual Reality & Intelligent Hardware, 2021, 3(2): 87-104 DOI:10.1016/j.vrih.2021.02.002

1. Fei F, Zhang J, Li J, Liu Z H. A unified stochastic particle Bhatnagar-Gross-Krook method for multiscale gas flows. Journal of Computational Physics, 2020, 400: 108972 DOI:10.1016/j.jcp.2019.108972

2. Zhang J, Tian P, Yao S, Fei F. Multiscale investigation of Kolmogorov flow: From microscopic molecular motions to macroscopic coherent structures. Physics of Fluids, 2019, 31(8): 082008 DOI:10.1063/1.5116206

3. Zhang J, John B, Pfeiffer M, Fei F, Wen D S. Particle-based hybrid and multiscale methods for nonequilibrium gas flows. Advances in Aerodynamics, 2019, 1(1): 1–15 DOI:10.1186/s42774-019-0014-7

4. Zhang J, Önskog T. Langevin equation elucidates the mechanism of the Rayleigh-Bénard instability by coupling molecular motions and macroscopic fluctuations. Physical Review. E, 2017, 96(4): 043104 DOI:10.1103/physreve.96.043104

5. Losasso F, Gibou F, Fedkiw R. Simulating water and smoke with an octree data structure. In: ACM SIGGRAPH 2004 Papers on-SIGGRAPH '04. Los Angeles, California, New York, ACM Press, 2004, 457–462 DOI:10.1145/1186562.1015745

6. Berger M J, Colella P. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics, 1989, 82(1): 64–84 DOI:10.1016/0021-9991(89)90035-1

7. Yan H, Wang Z Y, He J, Chen X, Wang C B, Peng Q S. Real-time fluid simulation with adaptive SPH. Computer Animation and Virtual Worlds, 2009, 20(2/3): 417–426 DOI:10.1002/cav.300

8. Ferstl F, Ando R, Wojtan C, Westermann R, Thuerey N. Narrow band FLIP for liquid simulations. Computer Graphics Forum, 2016, 35(2): 225–232 DOI:10.1111/cgf.12825

9. Chu J Y, Zafar N B, Yang X B. A schur complement preconditioner for scalable parallel fluid simulation. ACM Transactions on Graphics, 2017, 36(4): 1 DOI:10.1145/3072959.3126843

10. Gao M, Wang X L, Wu K, Pradhana A, Sifakis E, Yuksel C, Jiang C. GPU optimization of material point methods. ACM Transactions on Graphics, 2019, 37(6): 1–12 DOI:10.1145/3272127.3275044

11. Kim T, Thürey N, James D, Gross M. Wavelet turbulence for fluid simulation. ACM Transactions on Graphics, 2008, 27(3): 1–6 DOI:10.1145/1360612.1360649

12. Pfaff T, Thuerey N, Gross M. Lagrangian vortex sheets for animating fluids. ACM Transactions on Graphics, 2012, 31(4): 1–8 DOI:10.1145/2185520.2185608

13. Pfaff T, Thuerey N, Cohen J, Tariq S, Gross M. Scalable fluid simulation using anisotropic turbulence particles. In: ACM SIGGRAPH Asia 2010 papers on- SIGGRAPH ASIA '10. Seoul, South Korea, New York, ACM Press, 2010, 1–8 DOI:10.1145/1882262.1866196

14. Thürey N, Wojtan C, Gross M, Turk G. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics (TOG), 2010, 29(4): 1–10 DOI:10.1145/1778765.1778785

15. Treuille A, Lewis A, Popović Z. Model reduction for real-time fluids. ACM Transactions on Graphics, 2006, 25(3): 826–834 DOI:10.1145/1141911.1141962

16. Stanton M, Humberston B, Kase B, O'Brien J F, Fatahalian K, Treuille A. Self-refining games using player analytics. ACM Transactions on Graphics, 2014, 33(4): 1–9 DOI:10.1145/2601097.2601196

17. Ladický L, Jeong S, Solenthaler B, Pollefeys M, Gross M. Data-driven fluid simulations using regression forests. ACM Transactions on Graphics, 2015, 34(6): 1–9 DOI:10.1145/2816795.2818129

18. Tompson J, Schlachter K, Sprechmann P, Perlin K. Accelerating Eulerian fluid simulation with convolutional networks. International Conference on Machine Learning. 2017, 3424‒3433

19. Yang S, He X, Zhu B. Learning Physical Constraints with Neural Projections. Advances in Neural Information Processing Systems, 2020, 33

20. Zhang J, Ma W J. Data-driven discovery of governing equations for fluid dynamics based on molecular simulation. Journal of Fluid Mechanics, 2020, 892: A5 DOI:10.1017/jfm.2020.184

21. Brunton S L, Noack B R, Koumoutsakos P. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 2020, 52(1): 477–508 DOI:10.1146/annurev-fluid-010719-060214

22. Wiewel S, Kim B, Azevedo V C, Solenthaler B, Thuerey N. Latent space subdivision: stable and controllable time predictions for fluid flow. Computer Graphics Forum, 2020, 39(8): 15–25 DOI:10.1111/cgf.14097

23. Xie Y, Franz E, Chu M Y, Thuerey N. tempoGAN. ACM Transactions on Graphics, 2018, 37(4): 1–15 DOI:10.1145/3197517.3201304

24. Ummenhofer B, Prantl L, Thuerey N, Koltun V. Lagrangian fluid simulation with continuous convolutions. International Conference on Learning Representations, 2020 DOI:10.1146/annurev.fluid.35.101101.161209

25. Kim B, Azevedo V C, Gross M, Solenthaler B. Transport-based neural style transfer for smoke simulations. ACM Transactions on Graphics, 2019, 38(6): 188 DOI:10.1145/3355089.3356560

26. Kim B, Azevedo V C, Gross M, Solenthaler B. Lagrangian neural style transfer for fluids. ACM Transactions on Graphics, 2020, 39(4): 52 DOI:10.1145/3386569.3392473

27. Eckert M L, Um K, Thuerey N. ScalarFlow: a large-scale volumetric data set of real-world scalar transport flows for computer animation and machine learning. ACM Transactions on Graphics (TOG), 2019, 38(6): 1‒16 DOI:10.1145/3355089.3356545

28. Ma P C, Tian Y S, Pan Z R, Ren B, Manocha D. Fluid directed rigid body control using deep reinforcement learning. ACM Transactions on Graphics, 2018, 37(4): 1–11 DOI:10.1145/3197517.3201334

29. Duraisamy K, Iaccarino G, Xiao H. Turbulence modeling in the age of data. Annual Review of Fluid Mechanics, 2019, 51(1): 357–377 DOI:10.1146/annurev-fluid-010518-040547

30. Chang C W, Dinh N T. Classification of machine learning frameworks for data-driven thermal fluid models. International Journal of Thermal Sciences, 2019, 135: 559–579 DOI:10.1016/j.ijthermalsci.2018.09.002

31. Willard J, Jia X W, Xu S M, Steinbach M, Kumar V. Integrating physics-based modeling with machine learning: a survey. 2020

32. NewYork, ACMPress, 2001,15–22 DOI:10.1145/383259.383260

33. Bender J, Koschier D. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(3): 1193–1206 DOI:10.1109/tvcg.2016.2578335

34. Hu Y M, Fang Y, Ge Z H, Qu Z Y, Zhu Y X, Pradhana A, Jiang C. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Transactions on Graphics, 2018, 37(4): 1‒14 DOI:10.1145/3197517.3201293

35. Von Mises R, Geiringer H, Ludford G S. Mathematical theory of compressible fluid flow. Courier Corporation, 2004 DOI:10.1017/S002211205923033X

36. Foster N, Metaxas D. Controlling fluid animation. In: Proceedings Computer Graphics International. Hasselt and Diepenbeek, Belgium, IEEE, 1997, 178–188 DOI:10.1109/cgi.1997.601299

37. York New, Press ACM, 1999, 121–128 DOI:10.1145/311535.311548

38. Harlow F H, Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 1965, 8(12): 2182 DOI:10.1063/1.1761178

39. Chentanez N, Müller M. Real-time Eulerian water simulation using a restricted tall cell grid. In: ACM SIGGRAPH 2011 papers on-SIGGRAPH '11. Vancouver, British Columbia, Canada, New York, ACM Press, 2011, 1–10

40. Zhu B, Lu W L, Cong M, Kim B, Fedkiw R. A new grid structure for domain extension. ACM Transactions on Graphics, 2013, 32(4): 1–12

41. Xiao Y W, Chan S, Wang S Q, Zhu B, Yang X B. An adaptive staggered-tilted grid for incompressible flow simulation. ACM Transactions on Graphics, 2020, 39(6): 1‒15

42. Monaghan J J. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543–574

43. Müller M, Charypar D, Gross M H. Particle-based fluid simulation for interactive applications. Symposium on Computer Animation, 2003, 154‒159

44. Macklin M, Müller M. Position based fluids. ACM Transactions on Graphics, 2013, 32(4): 1–12

45. Macklin M, Müller M, Chentanez N, Kim T Y. Unified particle physics for real-time applications. ACM Transactions on Graphics, 2014, 33(4): 1–12

46. Cornelis J, Ihmsen M, Peer A, Teschner M. IISPH-FLIP for incompressible fluids. Computer Graphics Forum, 2014, 33(2): 255–262

47. Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995, 20(8/9): 1081–1106

48. Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229–256

49. Harlow F H. The particle-in-cell method for numerical solution of problems in fluid dynamics. Office of Scientific and Technical Information (OSTI), 1962

50. Brackbill J U, Ruppel H M. FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. Journal of Computational Physics, 1986, 65(2): 314–343

51. Zhu Y N, Bridson R. Animating sand as a fluid. ACM Transactions on Graphics, 2005, 24(3): 965–972

52. Jiang C, Schroeder C, Selle A, Teran J, Stomakhin A. The affine particle-in-cell method. ACM Transactions on Graphics, 2015, 34(4): 1–10

53. Fu C Y, Guo Q, Gast T, Jiang C, Teran J. A polynomial particle-in-cell method. ACM Transactions on Graphics, 2017, 36(6): 222

54. Yang C, Yang X B, Xiao X Y. Data-driven projection method in fluid simulation. Computer Animation and Virtual Worlds, 2016, 27(3/4): 415–424

55. Chu M Y, Thuerey N. Data-driven synthesis of smoke flows with CNN-based feature descriptors. ACM Transactions on Graphics, 2017, 36(4): 1–14

56. Xiao X Y, Yang C, Yang X B. Adaptive learning-based projection method for smoke simulation. Computer Animation and Virtual Worlds, 2018, 29(3/4): e1837

57. IEEE transactions on visualization and computer graphics. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(4): i–ii

58. Sato S, Morita T, Dobashi Y, Yamamoto T. A data-driven approach for synthesizing high-resolution animation of fire. DigiPro '12: Proceedings of the Digital Production Symposium, 2012, 37–42

59. Ling J L, Kurzawski A, Templeton J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 2016, 807: 155–166

60. Xiong S Y, He X Z, Tong Y J, Zhu B. Neural vortex method: from finite Lagrangian particles to infinite dimensional eulerian dynamics. 2020

61. Wiewel S, Becher M, Thuerey N. Latent space physics: towards learning the temporal evolution of fluid flow. Computer Graphics Forum, 2019, 38(2): 71–82

62. Kim B, Azevedo V C, Thuerey N, Kim T, Gross M, Solenthaler B. Deep fluids: a generative network for parameterized fluid simulations. Computer Graphics Forum, 2019, 38(2): 59–70

63. Thuerey N, Weißenow K, Prantl L, Hu X Y. Deep learning methods for Reynolds-averaged navier-stokes simulations of airfoil flows. AIAA Journal, 2019, 58(1): 25–36

64. Wang S L, Suo S, Ma W C, Pokrovsky A, Urtasun R. Deep parametric continuous convolutional neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 2589–2597

65. Bender J, Koschier D. Divergence-free smoothed particle hydrodynamics. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Los Angeles California, New York, NY, USA, ACM, 2015, 147–155

66. Li Y, Wu J, Tedrake R, Tenenbaum J B, Torralba A. Learning particle dynamics for manipulating rigid bodies, deformable objects, and fluids. 2018

67. Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J, Battaglia P W. Learning to simulate complex physics with graph networks. 2020

68. Schenck C, Fox D. SPNets: Differentiable fluid dynamics for deep neural networks. Conference on Robot Learning. 2018, 317‒335

69. Dwikatama P A, Dharma D, Kistijantoro A I. Fluid simulation based on material point method with neural network. In: 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT). Yogyakarta, Indonesia, IEEE, 2019, 244–249

70. Um K, Hu X Y, Thuerey N. Liquid splash modeling with neural networks. Computer Graphics Forum, 2018, 37(8): 171–182

71. Xiao X Y, Wang H, Yang X B. A CNN-based flow correction method for fast preview. Computer Graphics Forum, 2019, 38(2): 431–440

72. Battaglia P, Pascanu R, Lai M, Rezende D J, Kavukcuoglu K. Interaction networks for learning about objects, relations and physics. Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016, 4509‒4517

73. Sanchez-Gonzalez A, Heess N, Springenberg J T, Merel J, Riedmiller M A, Hadsell R, Battaglia P. Graph Networks as Learnable Physics Engines for Inference and Control. ICML, 2018

74. Mukherjee R, Li Q, Chen Z, Chu S, Wang H. Neuraldrop: DNN-based simulation of small-scale liquid flows on solids. 2018

75. Sato S, Dobashi Y, Kim T, Nishita T. Example-based turbulence style transfer. ACM Transactions on Graphics, 2018, 37(4): 1–9

76. Werhahn M, Xie Y, Chu M Y, Thuerey N. A multi-pass GAN for fluid flow super-resolution. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2019, 2(2): 1–21

77. Gatys L, Ecker A, Bethge M. A neural algorithm of artistic style. Journal of Vision, 2016, 16(12): 326

78. Gatys L A, Ecker A S, Bethge M. Image style transfer using convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, IEEE, 2016, 2414–2423

79. Ruder M, Dosovitskiy A, Brox T. Artistic style transfer for videos. In: Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016, 26–36

80. Thuerey N. Interpolations of smoke and liquid simulations. ACM Transactions on Graphics, 2017, 36(4): 1

81. Pan Z R, Manocha D. Efficient solver for spacetime control of smoke. ACM Transactions on Graphics, 2017, 36(4): 1

82. Sato S, Dobashi Y, Nishita T. Editing fluid animation using flow interpolation. ACM Transactions on Graphics, 2018, 37(5): 1–12

83. Flynn S, Egbert P, Holladay S, Morse B. Fluid carving. ACM Transactions on Graphics, 2019, 38(6): 1–14

84. Nielsen M B, Bridson R. Guide shapes for high resolution naturalistic liquid simulation. In: ACM SIGGRAPH 2011 papers on-SIGGRAPH '11. Vancouver, British Columbia, Canada, New York, ACM Press, 2011, 1–8

85. Morton J, Jameson A, Kochenderfer M J, Kochenderfer M J. Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems. 2018, 9258‒9268

86. Holl P, Thuerey N, Koltun V. Learning to Control PDEs with Differentiable Physics. International Conference on Learning Representations. 2019

87. Hu Y M, Liu J C, Spielberg A, Tenenbaum J B, Freeman W T, Wu J J, Rus D, Matusik W. ChainQueen: a real-time differentiable physical simulator for soft robotics. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada, IEEE, 2019, 6265–6271

88. Hu Y M, Li T M, Anderson L, Ragan-Kelley J, Taichi Durand F.. ACM Transactions on Graphics, 2019, 38(6): 1–16

89. Hu Y, Anderson L, Li T M, Sun Q, Carr N, Ragan-Kelley J, Durand F. DiffTaichi: Differentiable Programming for Physical Simulation. International Conference on Learning Representations. 2019

90. Lipton Z C. The mythos of model interpretability. Queue, 2018, 16(3): 31–57

91. Sci J H. Relu deep neural networks and linear finite elements. Journal of Computational Mathematics, 2020, 38(3): 502–527

92. He J C, Xu J C. MgNet: a unified framework of multigrid and convolutional neural network. Science China Mathematics, 2019, 62(7): 1331–1354

93. Lagaris I E, Likas A, Fotiadis D I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 1998, 9(5): 987–1000

94. Han J, Jentzen A, E W. Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(34): 8505–8510

95. Sirignano J, Spiliopoulos K. DGM: a deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 2018, 375: 1339–1364

96. Hsieh J T, Zhao S, Eismann S, Mirabella L, Ermon S. Learning neural PDE solvers with convergence guarantees. International Conference on Learning Representations. 2018

97. Um K, Brand R, Fei Y R, Holl P, Thuerey N. Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers. Advances in Neural Information Processing Systems, 2020, 33

98. Katrutsa A, Daulbaev T, Oseledets I. Deep multigrid: learning prolongation and restriction matrices. 2017

99. Greenfeld D, Galun M, Basri R, Yavneh I, Kimmel R. Learning to optimize multigrid PDE solvers. International Conference on Machine Learning. PMLR, 2019, 2415‒2423

100. Long Z C, Lu Y P, Dong B. PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network. Journal of Computational Physics, 2019, 399: 108925

101. Dharma D, Jonathan C, Kistidjantoro A I, Manaf A. Material point method based fluid simulation on GPU using compute shader. In: 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA). Denpasar, IEEE, 2017, 1–6

102. Moreland K, Angel E. The FFT on a GPU. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. 2003, 112‒119

103. Kobbelt L, Botsch M. A survey of point-based techniques in computer graphics. Computers & Graphics, 2004, 28(6): 801–814

104. Cui H G, Zhang H, Ganger G R, Gibbons P B, Xing E P. GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server. In: Proceedings of the Eleventh European Conference on Computer Systems. London United Kingdom, New York, NY, USA, ACM, 2016, 1–16

105. McAdams A, Sifakis E, Teran J. A Parallel Multigrid Poisson Solver for Fluids Simulation on Large Grids. Symposium on Computer Animation. 2010, 65‒73

106. Liu H X, Mitchell N, Aanjaneya M, Sifakis E. A scalable schur-complement fluids solver for heterogeneous compute platforms. ACM Transactions on Graphics, 2016, 35(6): 201

107. Jung H R, Kim S T, Noh J, Hong J M. A heterogeneous CPU-GPU parallel approach to a multigrid Poisson solver for incompressible fluid simulation. Computer Animation and Virtual Worlds, 2013, 24(3/4): 185–193

108. Lentine M, Zheng W, Fedkiw R. A novel algorithm for incompressible flow using only a coarse grid projection. ACM Transactions on Graphics (TOG), 2010, 29(4): 1‒9

109. Wang J X, Wu J L, Xiao H. A physics-informed machine learning approach of improving RANS predicted Reynolds stresses. In: 55th AIAA Aerospace Sciences Meeting. Grapevine, Texas, Reston, Virginia, AIAA, 2017

110. Milani P M, Ling J L, Eaton J K. Physical interpretation of machine learning models applied to film cooling flows. Journal of Turbomachinery, 2019, 141(1): 011004

111. Bao H, Feng J Y, Dinh N, Zhang H B. Computationally efficient CFD prediction of bubbly flow using physics-guided deep learning. International Journal of Multiphase Flow, 2020, 131: 103378

112. Bao H, Dinh N, Lin L Y, Youngblood R, Lane J, Zhang H B. Using deep learning to explore local physical similarity for global-scale bridging in thermal-hydraulic simulation. Annals of Nuclear Energy, 2020, 147: 107684

113. Kohl G, Um K, Thuerey N. Learning Similarity Metrics for Numerical Simulations. International Conference on Machine Learning. PMLR, 2020, 5349‒5360

114. Li Y, Perlman E, Wan M P, Yang Y K, Meneveau C, Burns R, Chen S Y, Szalay A, Eyink G. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. Journal of Turbulence, 2008, 9: N31

115. Myong H K, Kasagi N. A new approach to the improvement of k-ε turbulence model for wall-bounded shear flows. JSME International Journal Ser 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 1990, 33(1): 63–72

116. Schlatter P, Örlü R. Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics, 2010, 659: 116–126

117. Avsarkisov V, Hoyas S, Oberlack M, García-Galache J P. Turbulent plane Couette flow at moderately high Reynolds number. Journal of Fluid Mechanics, 2014, 751: R1

118. Zang G M, Idoughi R, Wang C L, Bennett A, Du J G, Skeen S, Roberts W L, Wonka P, Heidrich W. TomoFluid: reconstructing dynamic fluid from sparse view videos. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, IEEE, 2020, 1867–1876

119. Wang Y H, Idoughi R, Heidrich W. Stereo Event-based Particle Tracking Velocimetry for 3D Fluid Flow Reconstruction. European Conference on Computer Vision. Springer, Cham, 2020, 36–53

120. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray D G, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. Tensorflow: A system for large-scale machine learning. 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 2016, 265‒283

121. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. Pytorch: An imperative style, high-performance deep learning library. Advances In Neural Information Processing Systems, 2019, 8026‒8037

email E-mail this page

Articles by authors

VRIH