Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(2): 118-128

Published Date:2021-4-20 DOI: 10.1016/j.vrih.2021.01.003

Helmholtz decomposition-based SPH

Abstract

Background
SPH method has been widely used in the simulation of water scenes. As a numerical method of partial differential equations, SPH can easily deal with the distorted and complex boundary. In addition, the implementation of SPH is relatively simple, and the results are stable and not easy to diverge. However, SPH method also has its own limitations. In order to further improve the performance of SPH method and expand its application scope, a series of key and difficult problems restricting the development of SPH need to be improved.
Methods
In this paper, we introduce the idea of Helmholtz decomposition into the framework of smoothed particle hydrodynamics (SPH) and propose a novel velocity projection scheme for three-dimensional water simulation. First, we apply Helmholtz decomposition to a three-dimensional velocity field and decompose it into three orthogonal subspaces. Then, our method combines the idea of spatial derivatives in SPH to obtain a discrete Poisson velocity equation. Finally, the conjugate gradient (CG) is utilized to efficiently solve the Poisson equation.
Results
The experimental results show that the proposed scheme is suitable for various situations and has higher efficiency than the current SPH projection scheme.
Conclusion
Compared with the previous projection scheme, our solution does not need to modify the particle velocity indirectly by pressure projection, but directly by velocity field projection. The new scheme can be well integrated into the existing SPH framework, and can be applied to the interaction of water with static and dynamic obstacles, even for viscous fluid.

Keyword

Water simulation ; SPH ; Helmholtz decomposition ; Conjugate Gradient

Cite this article

Zhongyao YANG, Maolin WU, Shiguang LIU. Helmholtz decomposition-based SPH. Virtual Reality & Intelligent Hardware, 2021, 3(2): 118-128 DOI:10.1016/j.vrih.2021.01.003

References

1. Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389 DOI:10.1093/mnras/181.3.375

2. Gissler C, Peer A, Band S, Bender J, Teschner M. Interlinked SPH pressure solvers for strong fluid-rigid coupling. ACM Transactions on Graphics, 2019, 38(1): 5 DOI:10.1145/3284980

3. Bao K, Zhang H, Zheng L L, Wu E H. Pressure corrected SPH for fluid animation. Computer Animation and Virtual Worlds, 2009, 20(2/3): 311–320 DOI:10.1002/cav.299

4. Huang C, Zhu J, Sun H Q, Wu E H. Parallel-optimizing SPH fluid simulation for realistic VR environments. Computer Animation and Virtual Worlds, 2015, 26(1): 43–54 DOI:10.1002/cav.1564

5. Peer A, Gissler C, Band S, Teschner M. An implicit SPH formulation for incompressible linearly elastic solids. Computer Graphics Forum, 2018, 37(6): 135–148 DOI:10.1111/cgf.13317

6. Bender J, Koschier D, Kugelstadt T, Weiler M. Turbulent micropolar SPH fluids with foam. IEEE Transactions on Visualization and Computer Graphics, 2018, 25(6): 2284–2295 DOI:10.1109/tvcg.2018.2805110

7. Gissler C, Henne A, Band S, Peer A, Teschner M. An implicit compressible SPH solver for snow simulation. ACM Transactions on Graphics, 2020, 39(4): 36 DOI:10.1145/3386569.3392431

8. Koschier D, Bender J, Solenthaler B, Teschner M. Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids. 2020

9. Ren B, Li C F, Yan X, Lin M C, Bonet J, Hu S M. Multiple-fluid SPH simulation using a mixture model. ACM Transactions on Graphics, 2014, 33(5): 171 DOI:10.1145/2645703

10. Yan X, Jiang Y T, Li C F, Martin R R, Hu S M. Multiphase SPH simulation for interactive fluids and solids. ACM Transactions on Graphics, 2016, 35(4): 79 DOI:10.1145/2897824.2925897

11. Feng G, Liu S G. Detail-preserving SPH fluid control with deformation constraints. Computer Animation and Virtual Worlds, 2018, 29(1): e1781 DOI:10.1002/cav.1781

12. Zhang X Y, Liu S G. Parallel SPH fluid control with dynamic details. Computer Animation and Virtual Worlds, 2018, 29(2): e1801 DOI:10.1002/cav.1801

13. Zhang X Y, Liu S G. SPH haptic interaction with multiple-fluid simulation. Virtual Reality, 2017, 21(4): 165–175 DOI:10.1007/s10055-017-0308-1

14. Zhang X Y, Liu S G. SPH fluid control with self-adaptive turbulent details. Computer Animation and Virtual Worlds, 2015, 26(3/4): 357–366 DOI:10.1002/cav.1637

15. Monaghan J J. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543–574 DOI:10.1146/annurev.aa.30.090192.002551

16. Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003, 154–159

17. Becker M, Teschner M. Weakly compressible SPH for free surface flows. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2007, 209–217

18. Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Transactions on Graphics, 2009, 28(3): 40 DOI:10.1145/1531326.1531346

19. Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M. Implicit incompressible SPH. IEEE transactions on Visualization and Computer Graphics, 2013, 20(3): 426–435

20. Acharya S, Baliga B R, Karki K, Murthy J Y, Prakash C, Vanka S P. Pressure-based finite-volume methods in computational fluid dynamics. Journal of Heat Transfer, 2007, 129(4): 407–424 DOI:10.1115/1.2716419

21. Stam J. Stable fluids. In: SIGGRAPH, 1999,121–128

22. Bhatia H, Norgard G, Pascucci V, Bremer P T. The Helmholtz-hodge decomposition—A survey. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(8): 1386–1404 DOI:10.1109/tvcg.2012.316

23. Chorin A J, Marsden J E. A mathematical introduction to fluid mechanics. New York, NY, Springer US, 1990 DOI:10.1007/978-1-4684-0364-0

24. Maria Denaro F. On the application of the Helmholtz-Hodge decomposition in projection methods for incompressible flows with general boundary conditions. International Journal for Numerical Methods in Fluids, 2003, 43(1): 43–69 DOI:10.1002/fld.598

25. Zapata M A U, van Bang D P, Nguyen K D. Parallel SOR methods with a parabolic-diffusion acceleration technique for solving an unstructured-grid Poisson equation on 3D arbitrary geometries. International Journal of Computational Fluid Dynamics, 2016, 30(5): 370–385 DOI:10.1080/10618562.2016.1234045

26. Helfenstein R, Koko J. Parallel preconditioned conjugate gradient algorithm on GPU. Journal of Computational and Applied Mathematics, 2012, 236(15): 3584–3590 DOI:10.1016/j.cam.2011.04.025

27. Koschier D, Bender J, Solenthaler B, Teschner M. Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids. In: Eurographics, 2020, 1–41

28. Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics, 2012, 31(4): 1–8 DOI:10.1145/2185520.2185558

29. He X W, Wang H M, Zhang F J, Wang H, Wang G P, Zhou K. Robust simulation of sparsely sampled thin features in SPH-based free surface flows. ACM Transactions on Graphics, 2014, 34(1): 1–9 DOI:10.1145/2682630

30. Akinci G, Ihmsen M, Akinci N, Teschner M. Parallel surface reconstruction for particle-based fluids. Computer Graphics Forum, 2012, 31(6): 1797–1809 DOI:10.1111/j.1467-8659.2012.02096.x

31. Bender J, Koschier D. Divergence-free smoothed particle hydrodynamics. In: Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation. Los Angeles California, New York, NY, USA, ACM, 2015,147–155 DOI:10.1145/2786784.2786796

Related

1. Rongda ZENG, Zihao WU, Shengbang DENG, Jian ZHU, Xiaoyu CHI, Adaptive smoothing length method based on weighted average of neighboring particle density for SPH fluid simulation Virtual Reality & Intelligent Hardware 2021, 3(2): 129-141