A homogenization method for nonlinear inhomogeneous elastic materials
1. College of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao, Hebei 066004, China
3. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
4. Beijing Engineering Research Center for Virtual Simulation and Visualization, Beijing 100871, China
Abstract
Keywords： Physical-based simulation ; Homogenization theory ; Heterogeneous material ; Modal basis
Content
Example | E_{f} | E_{c} | t_{h}(min) | t_{f}(ms) | t_{c}(ms) | Speedup |
---|---|---|---|---|---|---|
bar swing | 13056 | 702 | 19.0 | 221.9 | 9.2 | 24.1x |
bar twist | 13056 | 702 | 21.0 | 215.1 | 10.5 | 20.5x |
T | 44413 | 584 | 49.9 | 846.3 | 8.1 | 104.5x |
Reference
Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 205–214 DOI:10.1145/37402.37427
Gloria A. Numerical homogenization: survey, new results, and perspectives. ESAIM: Proceedings, 2012, 37: 50–116 DOI:10.1051/proc/201237002
Kharevych L, Mullen P, Owhadi H, Desbrun M. Numerical coarsening of inhomogeneous elastic materials. In: ACM SIGGRAPH 2009 papers on-SIGGRAPH '09. New Orleans, Louisiana, New York, ACM Press, 2009, 28(3): 51:1–51:8 DOI:10.1145/1576246.1531357
Sifakis E, Barbic J. FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction. In: ACM SIGGRAPH 2012 Posters on-SIGGRAPH '12. Los Angeles, California, New York, ACM Press, 2012, 1–50 DOI:10.1145/2343483.2343501
Barbič J, James D L. Real-Time subspace integration for St. Venant-Kirchhoff deformable models. SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, 2005, 982–990 DOI:10.1145/1186822.1073300
Nealen A, Müller M, Keiser R, Boxerman E, Carlson M. Physically based deformable models in computer graphics. Computer Graphics Forum, 2006, 25(4): 809–836 DOI:10.1111/j.1467-8659.2006.01000.x
Gast T F, Schroeder C, Stomakhin A, Jiang C, Teran J M. Optimization integrator for large time steps. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(10): 1103–1115 DOI:10.1109/tvcg.2015.2459687
Müller M, Dorsey J, McMillan L, Jagnow R, Cutler B. Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation-SCA'02. San Antonio, Texas, New York, ACM Press, 2002, 49–54 DOI:10.1145/545261.545269
Müller M, Gross M. Interactive virtual materials. Proceedings of Graphics Interface. London, 2004, 239–246
Georgii J, Westermann R. Corotated finite elements made fast and stable. Proceedings of the 5th Workshop on Virtual Reality Interactions and Pysical Simulations. VRIPHYS 2008, Grenoble, France, 2008,11–19
James D L, Pai D K. Real time simulation of multizone elastokinematic models. In: Proceedings 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA, IEEE, 2002, 927–932 DOI:10.1109/robot.2002.1013475
James D L, Pai D K. Multiresolution Green's function methods for interactive simulation of large-scale elastostatic objects. ACM Transactions on Graphics, 2003, 22(1): 47–82 DOI:10.1145/588272.588278
Capell S, Green S, Curless B, Duchamp T, Popović Z. Interactive skeleton-driven dynamic deformations. ACM Transactions on Graphics, 2002, 21(3): 586–593 DOI:10.1145/566654.566622
Teschner M, Heidelberger B, Muller M, Gross M. A versatile and robust model for geometrically complex deformable solids. In: Proceedings Computer Graphics International. Crete, Greece, IEEE, 2004, 312–319 DOI:10.1109/cgi.2004.1309227
Choi M G, Ko H S. Modal warping: real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(1): 91–101 DOI:10.1109/tvcg.2005.13
Barbič J, Zhao Y. Real-time large-deformation substructuring. Acm Transactions on Graphics, 2011, 30(4):91:1–91:8 DOI:10.1145/1964921.1964986
Hildebrandt K, Schulz C, von Tycowicz C, Polthier K. Interactive spacetime control of deformable objects. ACM Transactions on Graphics, 2012, 31(4): 71 DOI:10.1145/2185520.2185567
Harmon D, Zorin D. Subspace integration with local deformations. ACM Transactions on Graphics, 2013, 32(4): 1–10 DOI:10.1145/2461912.2461922
von Tycowicz C, Schulz C, Seidel H P, Hildebrandt K. An efficient construction of reduced deformable objects. ACM Transactions on Graphics, 2013, 32(6): 213 DOI:10.1145/2508363.2508392
Nesme M, Payan Y, Faure F. Animating shapes at arbitrary resolution with non-uniform stiffness. Proceedings of the 3rd Workshop in Virtual Reality Interaction and Physical Simulation. Aire-la-Ville: Eurographics Association Press, 2006,1–8
Nesme M, Kry P G, Jeřábková L, Faure F. Preserving topology and elasticity for embedded deformable models. ACM Transactions on Graphics, 2009, 28(3): 1–9 DOI:10.1145/1531326.1531358
Bickel B, Bächer M, Otaduy M A, Matusik W, Pfister H, Gross M. Capture and modeling of non-linear heterogeneous soft tissue. ACM Transactions on Graphics, 2009, 28(3): 1–9 DOI:10.1145/1531326.1531395
Faure F, Gilles B, Bousquet G, Pai D K. Sparse meshless models of complex deformable solids. In: ACM SIGGRAPH 2011 papers on-SIGGRAPH '11. Vancouver, British Columbia, Canada, New York, ACM Press, 2011, 30(4):76–79 DOI:10.1145/1964921.1964968
Chen D S, Levin D I W, Sueda S, Matusik W. Data-driven finite elements for geometry and material design. ACM Transactions on Graphics, 2015, 34(4): 1–10 DOI:10.1145/2766889
Chen D S, Levin D I W, Matusik W, Kaufman D M. Dynamics-aware numerical coarsening for fabrication design. ACM Transactions on Graphics, 2017, 36(4): 1–15 DOI:10.1145/3072959.3073669
Chen J, Bao H J, Wang T, Desbrun M, Huang J. Numerical coarsening using discontinuous shape functions. ACM Transactions on Graphics, 2018, 37(4): 1–12 DOI:10.1145/3197517.3201386
Chen J, Budninskiy M, Owhadi H, Bao H J, Huang J, Desbrun M. Material-adapted refinable basis functions for elasticity simulation. ACM Transactions on Graphics, 2019, 38(6): 161 DOI:10.1145/3355089.3356567
Johnson S G. The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nolpt
Stuart D A, Levine J A, Jones B, Bargteil A W. Automatic construction of coarse, high-quality tetrahedralizations that enclose and approximate surfaces for animation. In: Proceedings of Motion on Games-MIG '13. Dublin 2, Ireland, New York, ACM Press, 2019 DOI:10.1145/2522628.2522648
Barbič J, Sin F S, Schroeder D. VegaFEM Library, http://www.jernejbarbic.com/vega, 2012