Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2021, 3(2): 142-155 Published Date:2021-4-20

DOI: 10.1016/j.vrih.2021.01.001

Stains on imperfect textile

Full Text: PDF (3) HTML (61)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

The imperfect material effect is one of the most important themes to obtain photo-realistic results in rendering. Textile material rendering has always been a key area in the field of computer graphics. So far, a great deal of effort has been invested in its unique appearance and physics-based simulation. The appearance of the dyeing effect commonly found in textiles has received little attention. This paper introduces techniques for simulation of staining effects on textiles. Pulling, wearing, squeezing, tearing, and breaking effects are more common imperfect effects of fabrics, these external forces will cause changes in the fabric structure, thus affecting the diffusion effect of stains. Based on the microstructure of yarn, we handle the effect of the stain on the imperfect textile surface. Our simulation results can achieve a photo-realistic effect.
Keywords: Fabric appearance ; Capillary action ; Stains ; Simulation

Cite this article:

Yi ZHENG, Xiaoyu CHI, Yanyun CHEN, Enhua WU. Stains on imperfect textile. Virtual Reality & Intelligent Hardware, 2021, 3(2): 142-155 DOI:10.1016/j.vrih.2021.01.001

1. Kaldor J M, James D L, Marschner S. Simulating knitted cloth at the yarn level. In: ACM SIGGRAPH 2008 papers on- SIGGRAPH '08. Los Angeles, California, New York, ACM Press, 2008 DOI:10.1145/1399504.1360664

2. Xu Y, Chen Y, Lin S, Zhong H, Wu E, Guo B, Shum H. Photorealistic rendering of knitwear using the lumislice. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. Los Angeles, California, USA, ACM, 2001 DOI: 10.1145/383259.383303

3. Zhao S, Jakob W, Marschner S, Bala K. Structure-aware synthesis for predictive woven fabric appearance. ACM Transactions on Graphics, 2012, 31(4): 1–10 DOI:10.1145/2185520.2185571

4. Maui, HI, USA, IEEE, 2007, 57–64 DOI:10.1109/pg.2007.51

5. Zheng Y, Chen Y Y, Fei G Z, Dorsey J, Wu E H. Simulation of textile stains. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(7): 2471–2481 DOI:10.1109/tvcg.2018.2832039

6. Sears F W, Zemanski M W. University Physics 2nd ed. Addison Wesley,1955

7. Hollies N R S, Kaessinger M M, Watson B S, Bogaty H. Water transport mechanisms in textile materials: part II: capillary-type penetration in yarns and fabrics. Textile Research Journal, 1957, 27(1): 8–13 DOI:10.1177/004051755702700102

8. Hsieh Y L. Liquid transport in fabric structures. Textile Research Journal, 1995, 65(5): 299–307

9. Washburn E W. The dynamics of capillary flow. Physical Review, 1921, 17(3): 273 DOI:10.1103/physrev.17.273

10. Wiener J, Dejlov P. Wicking and wetting in textiles. AUTEX Research Journal, 2003, 64–71

11. Zhang Y, Wang H, Zhang C, Chen Y. Wicking and wetting in textiles. Journal of Materials Science, 2007, 42(19): 8035–8039

12. Takatera M. Effect of fabric structure and yarn on capillary liquid flow within fabrics. Journal of Fiber Bioengineering and Informatics, 2018, 6(2): 205–215 DOI:10.3993/jfbi06201309

13. Liu T, Choi K F, Li Y. Wicking in twisted yarns. Journal of Colloid and Interface Science, 2008, 318(1): 134–139 DOI:10.1016/j.jcis.2007.10.023

14. Mhetre S K. Effect of fabric structure on liquid transport, ink jet drop spreading and printing quality. Georgia Institute of Technology, 2009

15. Daubert K, Lensch H P A, Heidrich W, Seidel H P. Efficient cloth modeling and rendering. In: Proceedings of the 12th Eurographics Conference on Rendering. Switzerland, Eurographics Association, 2001

16. Known Not, York New, Press ACM, 2001 DOI:10.1145/383259.383303

17. Zhao S, Luan F J, Bala K. Fitting procedural yarn models for realistic cloth rendering. ACM Transactions on Graphics, 2016, 35(4): 1–11 DOI:10.1145/2897824.2925932

18. Montazeri Z, Xiao C, Fei Y, Zheng C X, Zhao S. Mechanics-aware modeling of cloth appearance. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(1): 137–150 DOI:10.1109/tvcg.2019.2937301

19. Schröder K, Zhao S, Zinke A. Recent advances in physically-based appearance modeling of cloth. In: SIGGRAPH Asia 2012 Courses on-SA '12. Singapore, Singapore, New York, ACM Press, 2012 DOI:10.1145/2407783.2407795

20. Schröder K, Zinke A, Klein R. Image-based reverse engineering and visual prototyping of woven cloth. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(2): 188–200 DOI:10.1109/tvcg.2014.2339831

21. Aliaga C, Castillo C, Gutierrez D, Otaduy M A, Lopez-Moreno J, Jarabo A. An appearance model for textile fibers. Computer Graphics Forum, 2017, 36(4): 35–45 DOI:10.1111/cgf.13222

22. Castillo C, López-Moreno J, Aliaga C. Recent advances in fabric appearance reproduction. Computers & Graphics, 2019, 84: 103–121 DOI:10.1016/j.cag.2019.07.007

23. Perlin K. An image synthesizer. ACM SIGGRAPH Computer Graphics, 1985, 19(3): 287–296 DOI:10.1145/325165.325247

24. Jensen H W, Legakis J, Dorsey J. Rendering of wet materials. In: Proceedings of the Eurographics Workshop in Granada. Spain, Eurographics, Springer, 1999 DOI: 10.1007/978-3-7091-6809-7n 24

25. Chen Y, Xia L, Wong T, Tong X, Bao H, Guo B, Shum H. Visual simulation of weathering by ɤ-ton tracing. ACM Transactions on Graphics, 24(3): 1127–1133 DOI:10.1145/1073204.1073321

26. York New, Press ACM, 1999 DOI:10.1145/311535.311560

27. Lu J Y, Georghiades A S, Rushmeier H, Dorsey J, Xu C. Synthesis of material drying history: phenomenon modeling, transferring and rendering. In: ACM SIGGRAPH 2006 Courses on-SIGGRAPH '06. Boston, Massachusetts, New York, ACM Press, 2006 DOI:10.1145/1185657.1185726

28. Chu N S H, Tai C L. Moxi: Real-time ink dispersion in absorbent paper. ACM Transactions on Graphics, 2005, 24(3): 504–511

29. Gu J W, Tu C I, Ramamoorthi R, Belhumeur P, Matusik W, Nayar S. Time-varying surface appearance. ACM Transactions on Graphics, 2006, 25(3): 762–771 DOI:10.1145/1141911.1141952

30. Lu J Y, Georghiades A S, Glaser A, Wu H Z, Wei L Y, Guo B N, Dorsey J, Rushmeier H. Context-aware textures. ACM Transactions on Graphics, 2007, 26(1): 3 DOI:10.1145/1189762.1189765

31. Lenaerts T, Adams B, Dutré P. Porous flow in particle-based fluid simulations. ACM Transactions on Graphics, 2008, 27(3): 1–8 DOI:10.1145/1360612.1360648

32. Fei Y R, Batty C, Grinspun E, Zheng C X. A multi-scale model for simulating liquid-fabric interactions. ACM Transactions on Graphics, 2018, 37(4): 1–16 DOI:10.1145/3197517.3201392

33. Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 205–214 DOI:10.1145/37402.37427

34. NewYork, Press ACM, 1994 DOI:10.1145/192161.192259

35. Provot, X. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Graphics Interface. 1995

36. Kaldor J M, James D L, Marschner S. Simulating knitted cloth at the yarn level. In: ACM SIGGRAPH 2008 papers on - SIGGRAPH '08. Los Angeles, California, New York, ACM Press, 2008 DOI:10.1145/1399504.1360664

37. Kaldor J M, James D L, Marschner S. Efficient yarn-based cloth with adaptive contact linearization. In: ACM SIGGRAPH 2010 papers on-SIGGRAPH '10. Los Angeles, California, New York, ACM Press, 2010 DOI:10.1145/1833349.1778842

38. Cirio G, Lopez-Moreno J, Miraut D, Otaduy M A. Yarn-level simulation of woven cloth. ACM Transactions on Graphics, 2014, 33(6): 1–11 DOI:10.1145/2661229.2661279

39. Mhetre S K. Effect of fabric structure on liquid transport, ink jet drop spreading and printing quality. Georgia Institute of Technology, 2009

email E-mail this page

Articles by authors

VRIH