Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2021, 3(2): 105-117

Published Date:2021-4-20 DOI: 10.1016/j.vrih.2020.12.003

Affine particle-in-cell method for two-phase liquid simulation

Abstract

Background
The interaction of gas and liquid can produce many interesting phenomena, such as bubbles rising from the bottom of the liquid. The simulation of two-phase fluids is a challenging topic in computer graphics. To animate the interaction of a gas and liquid, MultiFLIP samples the two types of particles, and a Euler grid is used to track the interface of the liquid and gas. However, MultiFLIP uses the fluid implicit particle (FLIP) method to interpolate the velocities of particles into the Euler grid, which suffer from additional noise and instability.
Methods
To solve the problem caused by fluid implicit particles (FLIP), we present a novel velocity transport technique for two individual particles based on the affine particle-in-cell (APIC) method. First, we design a weighed coupling method for interpolating the velocities of liquid and gas particles to the Euler grid such that we can apply the APIC method to the simulation of a two-phase fluid. Second, we introduce a narrowband method to our system because MultiFLIP is a time-consuming approach owing to the large number of particles.
Results
Experiments show that our method is well integrated with the APIC method and provides a visually credible two-phase fluid animation.
Conclusions
The proposed method can successfully handle the simulation of a two-phase fluid.

Keyword

Fluid simulation ; Two-Phase flow ; Affine particle-in-cell method

Cite this article

Luan LYU, Wei CAO, Enhua WU, Zhixin YANG. Affine particle-in-cell method for two-phase liquid simulation. Virtual Reality & Intelligent Hardware, 2021, 3(2): 105-117 DOI:10.1016/j.vrih.2020.12.003

References

1. Boyd L, Bridson R. MultiFLIP for energetic two-phase fluid simulation. ACM Transactions on Graphics, 2012, 31(2): 1–12 DOI:10.1145/2159516.2159522

2. Jiang C, Schroeder C, Selle A, Teran J, Stomakhin A. The affine particle-in-cell method. ACM Transactions on Graphics, 2015, 34(4): 1–10 DOI:10.1145/2766996

3. Ferstl F, Ando R, Wojtan C, Westermann R, Thuerey N. Narrow band FLIP for liquid simulations. Computer Graphics Forum, 2016, 35(2): 225–232 DOI:10.1111/cgf.12825

4. Foster N, Metaxas D. Realistic animation of liquids. Graphical Models and Image Processing, 1996, 58(5): 471–483 DOI:10.1006/gmip.1996.0039

5. Liu X D, Fedkiw R P, Kang M. A boundary condition capturing method for poisson's equation on irregular domains. Journal of Computational Physics, 2000, 160(1): 151–178 DOI:10.1006/jcph.2000.6444

6. Hong J M, Kim C H. Discontinuous fluids. ACM Transactions on Graphics, 2005, 24(3): 915–920 DOI:10.1145/1073204.1073283

7. Losasso F, Shinar T, Selle A, Fedkiw R. Multiple interacting liquids. ACM Transactions on Graphics, 2006, 25(3): 812–819 DOI:10.1145/1141911.1141960

8. Kim B, Liu Y J, Llamas I, Jiao X M, Rossignac J. Simulation of bubbles in foam with the volume control method. ACM Transactions on Graphics, 2007, 26(3): 98 DOI:10.1145/1276377.1276500

9. Ando R, Thuerey N, Wojtan C. A stream function solver for liquid simulations. ACM Transactions on Graphics, 2015, 34(4): 1–9 DOI:10.1145/2766935

10. Ren B, Li C F, Yan X, Lin M C, Bonet J, Hu S M. Multiple-fluid SPH simulation using a mixture model. ACM Transactions on Graphics, 2014, 33(5): 1–11 DOI:10.1145/2645703

11. Yang T, Chang J, Ren B, Lin M C, Zhang J J, Hu S M. Fast multiple-fluid simulation using Helmholtz free energy. ACM Transactions on Graphics, 2015, 34(6): 1–11 DOI:10.1145/2816795.2818117

12. Ma M, Lu J C, Tryggvason G. Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system. Physics of Fluids, 2015, 27(9): 092101 DOI:10.1063/1.4930004

13. Edwards E, Bridson R. A high-order accurate particle-in-cell method. International Journal for Numerical Methods in Engineering, 2012, 90(9): 1073–1088 DOI:10.1002/nme.3356

14. Cornelis J, Ihmsen M, Peer A, Teschner M. IISPH-FLIP for incompressible fluids. Computer Graphics Forum, 2014, 33(2): 255–262 DOI:10.1111/cgf.12324

15. Fu C Y, Guo Q, Gast T, Jiang C, Teran J. A polynomial particle-in-cell method. ACM Transactions on Graphics, 2017, 36(6): 1–2 DOI:10.1145/3130800.3130878

16. Sato T, Wojtan C, Thuerey N, Igarashi T, Ando R. Extended narrow band FLIP for liquid simulations. Computer Graphics Forum, 2018, 37(2): 169–177 DOI:10.1111/cgf.13351

17. Lyu L, Ren X H, Cao W, Zhu J, Wu E H. Adaptive narrow band MultiFLIP for efficient two-phase liquid simulation. Science China Information Sciences, 2018, 61(11): 114101 DOI:10.1007/s11432-018-9518-3

Related

1. Qian CHEN, Yue WANG, Hui WANG, Xubo YANG, Data-driven simulation in fluids animation: A survey Virtual Reality & Intelligent Hardware 2021, 3(2): 87-104

2. Rongda ZENG, Zihao WU, Shengbang DENG, Jian ZHU, Xiaoyu CHI, Adaptive smoothing length method based on weighted average of neighboring particle density for SPH fluid simulation Virtual Reality & Intelligent Hardware 2021, 3(2): 129-141