2021, 3(1): 33-42 Published Date:2021-2-20
DOI: 10.1016/j.vrih.2020.10.002
Full Text:
PDF (5)
HTML (102)
Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks
Abstract:
Cite this article:
1.
Chen X, Cheng J, Song R C, Liu Y, Ward R, Wang Z J. Video-based heart rate measurement: recent advances and future prospects. IEEE Transactions on Instrumentation and Measurement, 2019, 68(10): 3600–3615 DOI:10.1109/tim.2018.2879706
2.
Wang C, Pun T, Chanel G. A comparative survey of methods for remote heart rate detection from frontal face videos. Frontiers in Bioengineering and Biotechnology, 2018, 6: 33
3.
Li X, Han H, Lu H, Niu X, Yu Z, Dantcheva A, Zhao G, Shan S. The 1st challenge on remote physiological signal sensing (RePSS). In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2020
4.
Li X, Chen J, Zhao G, Pietikainen M. Remote heart rate measurement from face videos under realistic situations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2014
5.
Qiu Y, Liu Y, Arteaga-Falconi J, Dong H W, Saddik A E. EVM-CNN: real-time contactless heart rate estimation from facial video. IEEE Transactions on Multimedia, 2019, 21(7): 1778–1787
6.
Kopeliovich M. On indirect assessment of heart rate in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2020
7.
Mironenko Y. Remote photoplethysmography: rarely considered factors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2020
8.
Poh M Z, McDuff D J, Picard R W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express, 2010, 18(10): 10762–10774
9.
Balakrishnan G, Durand F, Guttag J. Detecting pulse from head motions in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2013
10.
de Haan G, Jeanne V. Robust pulse rate from chrominance-based rPPG. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2878–2886
11.
de Haan G, van Leest A. Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiological Measurement, 2014, 35(9): 1913–1926
12.
Wang W J, Stuijk S, de Haan G. A novel algorithm for remote photoplethysmography: spatial subspace rotation. IEEE Transactions on Biomedical Engineering, 2016, 63(9): 1974–1984
13.
Wang W J, den Brinker A C, Stuijk S, de Haan G. Algorithmic principles of remote PPG. IEEE Transactions on Biomedical Engineering, 2017, 64(7): 1479–1491
14.
Chen W X, McDuff D. DeepPhys: video-based physiological measurement using convolutional attention networks. In: Computer Vision – ECCV 2018. Springer International Publishing, 2018, 356–373
15.
Wang Z K, Kao Y, Hsu C T. Vision-based heart rate estimation via a two-stream cnn. In: IEEE International Conference on Image Processing. IEEE, 2019
16.
Liu H X, Simonyan K, Yang Y M. DARTS: differentiable architecture search. 2018
17.
Yu Z, Li X, Zhao G. Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks. In: British Machine Vision Conference. 2019
18.
Hsu G S, Ambikapathi A M, Chen M S. Deep learning with time-frequency representation for pulse estimation from facial videos. In: IEEE International Joint Conference on Biometrics. IEEE, 2017
19.
Niu X S, Shan S G, Han H, Chen X L. RhythmNet: end-to-end heart rate estimation from face via spatial-temporal representation. IEEE Transactions on Image Processing, 2020, 29: 2409–2423
20.
Niu X, Zhao X, Han H, Das A, Chen X. Robust remote heart rate estimation from face utilizing spatial-temporal attention. In: IEEE International Conference on Automatic Face & Gesture Recognition. IEEE, 2019
21.
Baker B, Gupta O, Naik N, Raskar R. Designing neural network architectures using reinforcement learning. 2016
22.
Zoph B, Le Q V. Neural architecture search with reinforcement learning. 2016
23.
Real E. Large-scale evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine Learning. JMLR, 2017
24.
Chen X, Xie L X, Wu J, Tian Q. Progressive differentiable architecture search: bridging the depth gap between search and evaluation. 2019
25.
Xu Y, Xie L, Zhang X, Chen X, Qi G, Tian Q, Xiong H. PC-DARTS: partial channel connections for memory-efficient architecture search. In: International Conference on Learning Representations. New Orleans, USA, 2019
26.
Verkruysse W, Svaasand L O, Stuart Nelson J. Remote plethysmographic imaging using ambient light. Optics Express, 2008, 16(26): 21434–21445
27.
Wang W J, den Brinker A C, de Haan G. Single-element remote-PPG. IEEE Transactions on Biomedical Engineering, 2019, 66(7): 2032–2043
28.
Niu X S, Han H, Shan S G, Chen X L. VIPL-HR: A multi-modal database for pulse estimation from less-constrained face video. In: Computer Vision–ACCV 2018. Springer International Publishing, 2019, 562–576
29.
Špetlík R, Franc V, Matas J. Visual heart rate estimation with convolutional neural network. In: Proceedings of British Machine Vision Conference. 2018
30.
Stricker R, Müller S, Gross H M. Non-contact video-based pulse rate measurement on a mobile service robot. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication. 2014
31.
Carreira J, Zisserman A. Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2017
32.
Niu X, Han H, Shan S, Chen X. Synrhythm: learning a deep heart rate estimator from general to specifific. In: International Conference on Pattern Recognition. 2018
33.
Tulyakov S, Alameda-Pineda X, Ricci E, Yin L, Cohn J F, Sebe N. Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2016
34.
Yu Z T, Li X B, Niu X S, Shi J G, Zhao G Y. AutoHR: a strong end-to-end baseline for remote heart rate measurement with neural searching. IEEE Signal Processing Letters, 2020, 27: 1245–1249
35.
Ma N N, Zhang X Y, Zheng H T, Sun J. ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Computer Vision – ECCV 2018. Springer International Publishing, 2018, 122–138
36.
Han H, Shan S G, Chen X L, Lao S H, Gao W. Separability oriented preprocessing for illumination-insensitive face recognition. In: Computer Vision – ECCV 2012. Berlin, Heidelberg, Springer Berlin Heidelberg, 2012, 307–320
37.
Niu X, Han H, Yang S, Huang Y, Shan S. Local relationship learning with person-specific shape regularization for facial action unit detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019