Home About the Journal Latest Work Current Issue Archive Special Issues Editorial Board
<< Previous Next >>

2020, 2(5): 443-453

Published Date:2020-10-20 DOI: 10.1016/j.vrih.2020.09.001

VEGO: A novel design towards customizable and adjustable head-mounted display for VR

Abstract

Background
Virtual Reality (VR) technologies have advanced fast and have been applied to a wide spectrum of sectors in the past few years. VR can provide an immersive experience to users by generating virtual images and displaying the virtual images to the user with a head-mounted display (HMD) which is a primary component of VR. Normally, an HMD contains a list of hardware components, e.g., housing pack, micro LCD display, microcontroller, optical lens, etc. Settings of VR HMD to accommodate the user’s inter-pupil distance (IPD) and the user’s eye focus power are important for the user’s experience with VR.
Methods
Although various methods have been developed towards IPD and focus adjustments for VR HMD, the increased cost and complexity impede the possibility for users who wish to assemble their own VR HMD for various purposes, e.g., DIY teaching, etc. In our paper, we present a novel design towards building a customizable and adjustable HMD for VR in a cost-effective manner. Modular design methodology is adopted, and the VR HMD can be easily printed with 3D printers. The design also features adjustable IPD and variable distance between the optical lens and the display. It can help to mitigate the vergence and accommodation conflict issue.
Results
A prototype of the customizable and adjustable VR HMD has been successfully built up with off-the-shelf components. A VR software program running on Raspberry Pi board has been developed and can be utilized to show the VR effects. A user study with 20 participants is conducted with positive feedback on our novel design.
Conclusions
Modular design can be successfully applied for building up VR HMD with 3D printing. It helps to promote the wide application of VR at affordable costs while featuring flexibility and adjustability.

Keyword

Virtual reality ; Head mounted display ; Vergence accommodation conflict ; Inter-pupil distance

Cite this article

Jia Ming LEE, Xinxing XIA, Clemen OW, Felix CHUA, Yunqing GUAN. VEGO: A novel design towards customizable and adjustable head-mounted display for VR. Virtual Reality & Intelligent Hardware, 2020, 2(5): 443-453 DOI:10.1016/j.vrih.2020.09.001

References

1. Sutherland I E. A head-mounted three dimensional display. In: Fall Joint Computer Conference (Fall, part I). San Francisco, California, New York, ACM Press, 1968, 757–764 DOI:10.1145/1476589.1476686

2. Rheingold H. Virtual Reality. Summit Books, 1991 DOI:10.1080/00140139308967935

3. McMillan K, Flood K, Glaeser R. Virtual reality, augmented reality, mixed reality, and the marine conservation movement. Aquatic Conservation: Marine and Freshwater Ecosystems, 2017, 27(S1): 162–168 DOI:10.1002/aqc.2820

4. Available from:https://www.theguardian.com/technology/2014/jul/22/facebook-oculus-rift-acquisition-virtual-reality

5. Psotka J. Immersive training systems: Virtual reality and education and training. Instructional Science, 1995, 23(5): 405–431 DOI:10.1007/bf00896880

6. Mazuryk T, Gervautz M. Virtual reality―history, applications, technology and future. 1999

7. Anthes C, García-Hernández R J, Wiedemann M, Kranzlmüller D. State of the art of virtual reality technology. In: 2016 IEEE Aerospace Conference. Big Sky, MT, USA, IEEE, 2016, 1–19 DOI:10.1109/aero.2016.7500674

8. Mujber T S, Szecsi T, Hashmi M S J. Virtual reality applications in manufacturing process simulation. Journal of Materials Processing Technology, 2004, 155/156: 1834–1838 DOI:10.1016/j.jmatprotec.2004.04.401

9. Alexander T, Westhoven M, Conradi J. Virtual environments for competency-oriented education and training. In: Advances in Human Factors, Business Management, Training and Education. Cham: Springer International Publishing, 2016: 23–29 DOI:10.1007/978-3-319-42070-7_3

10. Cai Y Y, Chia N K H, Thalmann D, Kee N K N, Zheng J M, Thalmann N M. Design and development of a virtual dolphinarium for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(2): 208–217 DOI:10.1109/tnsre.2013.2240700

11. Song H, Chen F Y, Peng Q J, Zhang J, Gu P H. Improvement of user experience using virtual reality in open-architecture product design. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232(13): 2264–2275 DOI:10.1177/0954405417711736

12. Schmidt M, Beck D, Glaser N, Schmidt C. A prototype immersive, multi-user 3D virtual learning environment for individuals with autism to learn social and life skills: A virtuoso DBR update. In: Communications in Computer and Information Science. Cham: Springer International Publishing, 2017, 185–188 DOI:10.1007/978-3-319-60633-0_15

13. Gallagher A G, Ritter E M, Champion H, Higgins G, Fried M P, Moses G. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Annals of Surgery, 2005, 241: 364 DOI:10.1002/bjs.1800840237

14. Ba R K T A, Cai Y Y, Guan Y Q. Augmented reality simulation of cardiac circulation using APPLearn (heart). In: 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). Taichung, Taiwan, China, IEEE, 2018, 241–243 DOI:10.1109/aivr.2018.00055

15. Zyda M. From visual simulation to virtual reality to games. Computer, 2005, 38(9): 25–32 DOI:10.1109/mc.2005.297

16. Meldrum D, Glennon A, Herdman S, Murray D, Mcconn-Walsh R. Virtual reality rehabilitation of balance: assessment of the usability of the Nintendo Wii®Fit Plus. Disability and Rehabilitation: Assistive Technology, 2012, 7(3): 205–210 DOI:10.3109/17483107.2011.616922

17. Indhumathi C, Cai Y Y, Guan Y Q, Opas M. 3D boundary extraction of confocal cellular images using higher order statistics. Journal of Microscopy, 2009, 235(2): 209–220 DOI:10.1111/j.1365-2818.2009.03203.x

18. Freeman D, Reeve S, Robinson A, Ehlers A, Clark D, Spanlang B, Slater M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine, 2017, 47(14): 2393–2400 DOI:10.1017/s003329171700040x

19. Slater M, Sanchez-Vives M V. Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 2016, 3: 74 DOI:10.3389/frobt.2016.00074

20. Available from:https://www.oculus.com/rift-s/features/

21. Available from:https://www.oculus.com/quest/features/

22. Lambooij M, IJsselsteijn W, Fortuin M, Heynderickx I. Visual discomfort and visual fatigue of stereoscopic displays: a review. Journal of Imaging Science and Technology, 2009, 53(3): 030201 DOI:10.2352/j.imagingsci.technol.2009.53.3.030201

23. Hoffman D M, Girshick A R, Akeley K, Banks M S. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 2008, 8(3): 1–30 DOI:10.1167/8.3.33

24. Vienne C, Sorin L, Blondé L, Huynh-Thu Q, Mamassian P. Effect of the accommodation-vergence conflict on vergence eye movements. Vision Research, 2014, 100: 124–133 DOI:10.1016/j.visres.2014.04.017

25. Kooi F L, Toet A. Visual comfort of binocular and 3D displays. Displays, 2004, 25(2/3): 99–108 DOI:10.1016/j.displa.2004.07.004

26. Shibata T, Kim J, Hoffman D M, Banks M S. The zone of comfort: Predicting visual discomfort with stereo displays. Journal of Vision, 2011, 11(8): 11 DOI:10.1167/11.8.11

27. Fuchs H, Bishop G. Research directions in virtual environments. Chapel Hill, NC, University of North Carolina at Chapel Hill. 1992

28. Konrad R, Padmanaban N, Molner K, Cooper E A Wetzstein G. Accommodation-invariant computational near-eye displays. ACM Transactions on Graphics, 2017, 36, 4 DOI:10.1145/3072959.3073594

29. Laffont P Y, Hasnain A. Adaptive dynamic refocusing: towards solving discomfort in virtual reality. In: ACM Siggraph 2017 Emerging Technologies. ACM, 2017, 1, 1–2 DOI:10.1145/3084822.3084839

30. Padmanaban N, Konrad R, Stramer T, Cooper E A, Wetzstein G. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays. PNAS, 2017, 114(9): 2183–2188 DOI:10.1007/978-3-642-04898-2_615

31. Konrad R, Angelopoulos A, Wetzstein G. Gaze-contingent ocular parallax rendering for virtual reality. In: ACM SIGGRAPH 2019 Talks. Los Angeles California, New York, NY, USA, ACM, 2019 DOI:10.1145/3306307.3328201

32. Available from:https://github.com/FaBoPlatform/FaBo9AXIS-MPU9250-Python

33. Available from:https://pi3d.github.io/html/ReadMe.html

34. Skillman T R, Gaunt P. Pi3d. 2020. Available from:https://github.com/tipam/pi3d

35. Available from:https://www.sketchup.com/

36. Neuhäuser M. Wilcoxon–Mann–Whitney Test. In: Lovric M. International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg, 2014 DOI:10.1007/978-3-642-04898-2_61

Related

1. Yang LI, Dong WU, Jin HUANG, Feng TIAN, Hong'an WANG, Guozhong DAI, Influence of multi-modality on moving target selection in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(3): 303-315

2. Yang LI, Jin HUANG, Feng TIAN, Hong-An WANG, Guo-Zhong DAI, Gesture interaction in virtual reality Virtual Reality & Intelligent Hardware 2019, 1(1): 84-112

3. Athirah SYAMIMI, Yiwei GONG, Ryan LIEW, VR industrial applicationsA singapore perspective Virtual Reality & Intelligent Hardware 2020, 2(5): 409-420

4. Susu HUANG, Daqing QI, Jiabin YUAN, Huawei TU, Review of studies on target acquisition in virtual reality based on the crossing paradigm Virtual Reality & Intelligent Hardware 2019, 1(3): 251-264

5. Yukang YAN, Xin YI, Chun YU, Yuanchun SHI, Gesture-based target acquisition in virtual and augmented reality Virtual Reality & Intelligent Hardware 2019, 1(3): 276-289

6. Yuan GAO, Le XIE, A review on the application of augmented reality in craniomaxillofacial surgery Virtual Reality & Intelligent Hardware 2019, 1(1): 113-120

7. Yuan CHANG, Guo-Ping WANG, A review on image-based rendering Virtual Reality & Intelligent Hardware 2019, 1(1): 39-54

8. Shiguang QIU, Shuntao LIU, Deshuai KONG, Qichang HE, Three-dimensional virtual-real mapping of aircraft autom-atic spray operation and online simulation monitoring Virtual Reality & Intelligent Hardware 2019, 1(6): 611-621

9. Xu PENG, Zhenyu GAO, Yitong DING, Dongfeng ZHAO, Xiaoyu CHI, Study of ghost image suppression in polarized catadioptric virtual reality optical systems Virtual Reality & Intelligent Hardware 2020, 2(1): 70-78

10. Zhiming HU, Sheng LI, Meng GAI, Temporal continuity of visual attention for future gaze prediction in immersive virtual reality Virtual Reality & Intelligent Hardware 2020, 2(2): 142-152

11. Hengwei XU, Siru LI, Wenpeng SONG, Jiajun SUN, Xinli WU, Xiaoqi WANG, Wenzhen YANG, Zhigeng PAN, Abdennour EI RHALIBI, Thermal perception method of virtual chemistry experiments Virtual Reality & Intelligent Hardware 2020, 2(4): 305-315

12. TJ MATTHEWS, Feng TIAN, Tom DOLBY, Interaction design for paediatric emergency VR training Virtual Reality & Intelligent Hardware 2020, 2(4): 330-344

13. Hongxin ZHANG, Jin ZHANG, Xue YIN, Kan ZHOU, Zhigeng PAN, Abdennour EI RHALIBI, Cloud-to-end rendering and storage management for virtual reality in experimental education Virtual Reality & Intelligent Hardware 2020, 2(4): 368-380

14. Xiang ZHOU, Liyu TANG, Ding LIN, Wei HAN, Virtual & augmented reality for biological microscope in experiment education Virtual Reality & Intelligent Hardware 2020, 2(4): 316-329

15. Haoyu WANG, Jianhuang WU, A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction Virtual Reality & Intelligent Hardware 2021, 3(4): 302-314

16. Na ZHANG, Liwen TAN, Fengying LI, Bing HAN, Yifa XU, Development and application of digital assistive teaching system for anatomy Virtual Reality & Intelligent Hardware 2021, 3(4): 315-335

17. Lihui HUANG, Siti Faatihah Binte Mohd TAIB, Ryan Aung BA, Zhe An GOH, Mengshan XU, Virtual reality research and development in NTU Virtual Reality & Intelligent Hardware 2020, 2(5): 394-408

18. Stéphanie PHILIPPE, Alexis D. SOUCHET, Petros LAMERAS, Panagiotis PETRIDIS, Julien CAPORAL, Gildas COLDEBOEUF, Hadrien DUZAN, Multimodal teaching, learning and training in virtual reality: a review and case study Virtual Reality & Intelligent Hardware 2020, 2(5): 421-442

19. Jingcheng QIAN, Yancong MA, Zhigeng PAN, Xubo YANG, Effects of Virtual-real fusion on immersion, presence, and learning performance in laboratory education Virtual Reality & Intelligent Hardware 2020, 2(6): 569-584

20. Dangxiao WANG, Yuan GUO, Shiyi LIU, Yuru ZHANG, Weiliang XU, Jing XIAO, Haptic display for virtual reality: progress and challenges Virtual Reality & Intelligent Hardware 2019, 1(2): 136-162

21. Aiguo SONG, Liyue FU, Multi-dimensional force sensor for haptic interaction: a review Virtual Reality & Intelligent Hardware 2019, 1(2): 121-135

22. Wenmin ZHU, Xiumin FAN, Yanxin ZHANG, Applications and research trends of digital human models in the manufacturing industry Virtual Reality & Intelligent Hardware 2019, 1(6): 558-579

23. Mohammad Mahmudul ALAM, S. M. Mahbubur RAHMAN, Affine transformation of virtual 3D object using 2D localization of fingertips Virtual Reality & Intelligent Hardware 2020, 2(6): 534-555

24. Yuan WEI, Dongdong GUAN, Qiuchen WANG, Xiangxian LI, Yulong BIAN, Pu QIN, Yanning XU, Chenglei YANG, Virtual fire drill system supporting co-located collaboration Virtual Reality & Intelligent Hardware 2019, 1(3): 290-302