Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2020, 2(5): 443-453 Published Date:2020-10-20

DOI: 10.1016/j.vrih.2020.09.001

VEGO: A novel design towards customizable and adjustable head-mounted display for VR

Full Text: PDF (0) HTML (88)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Background
Virtual Reality (VR) technologies have advanced fast and have been applied to a wide spectrum of sectors in the past few years. VR can provide an immersive experience to users by generating virtual images and displaying the virtual images to the user with a head-mounted display (HMD) which is a primary component of VR. Normally, an HMD contains a list of hardware components, e.g., housing pack, micro LCD display, microcontroller, optical lens, etc. Settings of VR HMD to accommodate the user’s inter-pupil distance (IPD) and the user’s eye focus power are important for the user’s experience with VR.
Methods
Although various methods have been developed towards IPD and focus adjustments for VR HMD, the increased cost and complexity impede the possibility for users who wish to assemble their own VR HMD for various purposes, e.g., DIY teaching, etc. In our paper, we present a novel design towards building a customizable and adjustable HMD for VR in a cost-effective manner. Modular design methodology is adopted, and the VR HMD can be easily printed with 3D printers. The design also features adjustable IPD and variable distance between the optical lens and the display. It can help to mitigate the vergence and accommodation conflict issue.
Results
A prototype of the customizable and adjustable VR HMD has been successfully built up with off-the-shelf components. A VR software program running on Raspberry Pi board has been developed and can be utilized to show the VR effects. A user study with 20 participants is conducted with positive feedback on our novel design.
Conclusions
Modular design can be successfully applied for building up VR HMD with 3D printing. It helps to promote the wide application of VR at affordable costs while featuring flexibility and adjustability.
Keywords: Virtual reality ; Head mounted display ; Vergence accommodation conflict ; Inter-pupil distance

Cite this article:

Jia Ming LEE, Xinxing XIA, Clemen OW, Felix CHUA, Yunqing GUAN. VEGO: A novel design towards customizable and adjustable head-mounted display for VR. Virtual Reality & Intelligent Hardware, 2020, 2(5): 443-453 DOI:10.1016/j.vrih.2020.09.001

1. Sutherland I E. A head-mounted three dimensional display. In: Fall Joint Computer Conference (Fall, part I). San Francisco, California, New York, ACM Press, 1968, 757–764 DOI:10.1145/1476589.1476686

2. Rheingold H. Virtual Reality. Summit Books, 1991 DOI:10.1080/00140139308967935

3. McMillan K, Flood K, Glaeser R. Virtual reality, augmented reality, mixed reality, and the marine conservation movement. Aquatic Conservation: Marine and Freshwater Ecosystems, 2017, 27(S1): 162–168 DOI:10.1002/aqc.2820

4. Available from:https://www.theguardian.com/technology/2014/jul/22/facebook-oculus-rift-acquisition-virtual-reality

5. Psotka J. Immersive training systems: Virtual reality and education and training. Instructional Science, 1995, 23(5): 405–431 DOI:10.1007/bf00896880

6. Mazuryk T, Gervautz M. Virtual reality―history, applications, technology and future. 1999

7. Anthes C, García-Hernández R J, Wiedemann M, Kranzlmüller D. State of the art of virtual reality technology. In: 2016 IEEE Aerospace Conference. Big Sky, MT, USA, IEEE, 2016, 1–19 DOI:10.1109/aero.2016.7500674

8. Mujber T S, Szecsi T, Hashmi M S J. Virtual reality applications in manufacturing process simulation. Journal of Materials Processing Technology, 2004, 155/156: 1834–1838 DOI:10.1016/j.jmatprotec.2004.04.401

9. Alexander T, Westhoven M, Conradi J. Virtual environments for competency-oriented education and training. In: Advances in Human Factors, Business Management, Training and Education. Cham: Springer International Publishing, 2016: 23–29 DOI:10.1007/978-3-319-42070-7_3

10. Cai Y Y, Chia N K H, Thalmann D, Kee N K N, Zheng J M, Thalmann N M. Design and development of a virtual dolphinarium for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(2): 208–217 DOI:10.1109/tnsre.2013.2240700

11. Song H, Chen F Y, Peng Q J, Zhang J, Gu P H. Improvement of user experience using virtual reality in open-architecture product design. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232(13): 2264–2275 DOI:10.1177/0954405417711736

12. Schmidt M, Beck D, Glaser N, Schmidt C. A prototype immersive, multi-user 3D virtual learning environment for individuals with autism to learn social and life skills: A virtuoso DBR update. In: Communications in Computer and Information Science. Cham: Springer International Publishing, 2017, 185–188 DOI:10.1007/978-3-319-60633-0_15

13. Gallagher A G, Ritter E M, Champion H, Higgins G, Fried M P, Moses G. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Annals of Surgery, 2005, 241: 364 DOI:10.1002/bjs.1800840237

14. Ba R K T A, Cai Y Y, Guan Y Q. Augmented reality simulation of cardiac circulation using APPLearn (heart). In: 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). Taichung, Taiwan, China, IEEE, 2018, 241–243 DOI:10.1109/aivr.2018.00055

15. Zyda M. From visual simulation to virtual reality to games. Computer, 2005, 38(9): 25–32 DOI:10.1109/mc.2005.297

16. Meldrum D, Glennon A, Herdman S, Murray D, Mcconn-Walsh R. Virtual reality rehabilitation of balance: assessment of the usability of the Nintendo Wii®Fit Plus. Disability and Rehabilitation: Assistive Technology, 2012, 7(3): 205–210 DOI:10.3109/17483107.2011.616922

17. Indhumathi C, Cai Y Y, Guan Y Q, Opas M. 3D boundary extraction of confocal cellular images using higher order statistics. Journal of Microscopy, 2009, 235(2): 209–220 DOI:10.1111/j.1365-2818.2009.03203.x

18. Freeman D, Reeve S, Robinson A, Ehlers A, Clark D, Spanlang B, Slater M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine, 2017, 47(14): 2393–2400 DOI:10.1017/s003329171700040x

19. Slater M, Sanchez-Vives M V. Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 2016, 3: 74 DOI:10.3389/frobt.2016.00074

20. Available from:https://www.oculus.com/rift-s/features/

21. Available from:https://www.oculus.com/quest/features/

22. Lambooij M, IJsselsteijn W, Fortuin M, Heynderickx I. Visual discomfort and visual fatigue of stereoscopic displays: a review. Journal of Imaging Science and Technology, 2009, 53(3): 030201 DOI:10.2352/j.imagingsci.technol.2009.53.3.030201

23. Hoffman D M, Girshick A R, Akeley K, Banks M S. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 2008, 8(3): 1–30 DOI:10.1167/8.3.33

24. Vienne C, Sorin L, Blondé L, Huynh-Thu Q, Mamassian P. Effect of the accommodation-vergence conflict on vergence eye movements. Vision Research, 2014, 100: 124–133 DOI:10.1016/j.visres.2014.04.017

25. Kooi F L, Toet A. Visual comfort of binocular and 3D displays. Displays, 2004, 25(2/3): 99–108 DOI:10.1016/j.displa.2004.07.004

26. Shibata T, Kim J, Hoffman D M, Banks M S. The zone of comfort: Predicting visual discomfort with stereo displays. Journal of Vision, 2011, 11(8): 11 DOI:10.1167/11.8.11

27. Fuchs H, Bishop G. Research directions in virtual environments. Chapel Hill, NC, University of North Carolina at Chapel Hill. 1992

28. Konrad R, Padmanaban N, Molner K, Cooper E A Wetzstein G. Accommodation-invariant computational near-eye displays. ACM Transactions on Graphics, 2017, 36, 4 DOI:10.1145/3072959.3073594

29. Laffont P Y, Hasnain A. Adaptive dynamic refocusing: towards solving discomfort in virtual reality. In: ACM Siggraph 2017 Emerging Technologies. ACM, 2017, 1, 1–2 DOI:10.1145/3084822.3084839

30. Padmanaban N, Konrad R, Stramer T, Cooper E A, Wetzstein G. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays. PNAS, 2017, 114(9): 2183–2188 DOI:10.1007/978-3-642-04898-2_615

31. Konrad R, Angelopoulos A, Wetzstein G. Gaze-contingent ocular parallax rendering for virtual reality. In: ACM SIGGRAPH 2019 Talks. Los Angeles California, New York, NY, USA, ACM, 2019 DOI:10.1145/3306307.3328201

32. Available from:https://github.com/FaBoPlatform/FaBo9AXIS-MPU9250-Python

33. Available from:https://pi3d.github.io/html/ReadMe.html

34. Skillman T R, Gaunt P. Pi3d. 2020. Available from:https://github.com/tipam/pi3d

35. Available from:https://www.sketchup.com/

36. Neuhäuser M. Wilcoxon–Mann–Whitney Test. In: Lovric M. International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg, 2014 DOI:10.1007/978-3-642-04898-2_61

email E-mail this page

Articles by authors

VRIH