Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2020, 2(4): 316-329 Published Date:2020-8-20

DOI: 10.1016/j.vrih.2020.07.004

Virtual & augmented reality for biological microscope in experiment education

Full Text: PDF (4) HTML (138)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Background
Mixed-reality technologies, including virtual reality (VR) and augmented reality (AR) , are considered to be promising potential tools for science teaching and learning processes that could foster positive emotions, motivate autonomous learning, and improve learning outcomes.
Methods
In this study, a technology-aided biological microscope learning system based on VR/AR is presented. The structure of the microscope is described in a detailed three-dimensional (3D) model, each component being represented with their topological interrelationships and associations among them being established. The interactive behavior of the model was specified, and a standard operating guide was compiled. The motion control of components was simulated based on collision detection. Combined with immersive VR equipment and AR technology, we developed a virtual microscope subsystem and a mobile virtual microscope guidance system.
Results
The system consisted of a VR subsystem and an AR subsystem. The focus of the VR subsystem was to simulate operating the microscope and associated interactive behaviors that allowed users to observe and operate the components of the 3D microscope model by means of natural interactions in an immersive scenario. The AR subsystem allowed participants to use a mobile terminal that took a picture of a microscope from a textbook and then displayed the structure and functions of the instrument, as well as the relevant operating guidance. This flexibly allowed students to use the system before or after class without time and space constraints. The system allowed users to switch between the VR and AR subsystems.
Conclusions
The system is useful for helping learners (especially K-12 students) to recognize a microscope's structure and grasp the required operational skills by simulating operations using an interactive process. In the future, such technology-assisted education would be a successful learning platform in an open learning space.
Keywords: Virtual reality ; Augmented reality ; Microscope ; Operating guide ; Experiment

Cite this article:

Xiang ZHOU, Liyu TANG, Ding LIN, Wei HAN. Virtual & augmented reality for biological microscope in experiment education. Virtual Reality & Intelligent Hardware, 2020, 2(4): 316-329 DOI:10.1016/j.vrih.2020.07.004

1. Sigitov A, Hinkenjann A, Roth T. Towards VR-based systems for school experiments. Procedia Computer Science, 2013, 25: 201–210 DOI:10.1016/j.procs.2013.11.025

2. Ardiny H, Khanmirza E. The role of AR and VR technologies in education developments: opportunities and challenges. In: 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM). Tehran, Iran, IEEE, 2018, 482–487 DOI:10.1109/icrom.2018.8657615

3. Stull A T, Gainer M J, Hegarty M. Learning by enacting: the role of embodiment in chemistry education. Learning and Instruction, 2018, 55: 80–92 DOI:10.1016/j.learninstruc.2017.09.008

4. Harley J M, Lajoie S P, Tressel T, Jarrell A. Fostering positive emotions and history knowledge with location-based augmented reality and tour-guide prompts. Learning and Instruction, 2018, 101163 DOI:10.1016/j.learninstruc.2018.09.001

5. Yip J, Wong S H, Yick K L, Chan K, Wong K H. Improving quality of teaching and learning in classes by using augmented reality video. Computers & Education, 2019, 128: 88–101 DOI:10.1016/j.compedu.2018.09.014

6. Chang S C, Hwang G J. Impacts of an augmented reality-based flipped learning guiding approach on students' scientific project performance and perceptions. Computers & Education, 2018, 125: 226–239 DOI:10.1016/j.compedu.2018.06.007

7. Kartiko I, Kavakli M, Cheng K. Learning science in a virtual reality application: the impacts of animated-virtual actors' visual complexity. Computers & Education, 2010, 55(2): 881–891 DOI:10.1016/j.compedu.2010.03.019

8. Mannuß F, Rubel J, Wagner C, Bingel F, Hinkenjann A. Augmenting magnetic field lines for school experiments. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality. Basel, Switzerland, IEEE, 2011, 263–264 DOI:10.1109/ismar.2011.6143893

9. Liu Q T, Xu S X, Yu S F, Yang Y Y, Wu L J, Ba S. Design and implementation of an AR-based inquiry courseware: magnetic field. In: 2019 International Symposium on Educational Technology (ISET). Hradec Kralove, Czech Republic, IEEE, 2019, 134–138 DOI:10.1109/iset.2019.00036

10. Chang R C, Yu Z S. Using augmented reality technologies to enhance students' engagement and achievement in science laboratories. International Journal of Distance Education Technologies, 2018, 16(4): 54–72 DOI:10.4018/ijdet.2018100104

11. Burden K, Kearney M. Future scenarios for mobile science learning. Research in Science Education, 2016, 46(2): 287–308 DOI:10.1007/s11165-016-9514-1

12. Yang S X, Mei B, Yue X Y. Mobile augmented reality assisted chemical education: insights from elements 4D. Journal of Chemical Education, 2018, 95(6): 1060–1062 DOI:10.1021/acs.jchemed.8b00017

13. Leahy S M, Holland C, Ward F. The digital frontier: envisioning future technologies impact on the classroom. Futures, 2019, 113: 102422 DOI:10.1016/j.futures.2019.04.009

14. Cheng K H, Tsai C C. Affordances of augmented reality in science learning: suggestions for future research. Journal of Science Education and Technology, 2013, 22(4): 449–462 DOI:10.1007/s10956-012-9405-9

15. Brett E S, Reed R S. Using coordination classes to interpret conceptual change in astronomical thinking. In the International Conference on Learning Sciences, 2004, 4: 634 DOI:10.1145/2858036.2858589

16. Andujar J M, Mejias A, Marquez M A. Augmented reality for the improvement of remote laboratories: an augmented remote laboratory. IEEE Transactions on Education, 2011, 54(3): 492–500 DOI:10.1109/te.2010.2085047

17. Cai S, Wang X, Chiang F K. A case study of Augmented Reality simulation system application in a chemistry course. Computers in Human Behavior, 2014, 37: 31–40 DOI:10.1016/j.chb.2014.04.018

18. Abu Bakar J A, Gopalan V, Zulkifli A N, Alwi A. Design and development of mobile augmented reality for physics experiment. In: Communications in Computer and Information Science. Singapore, Springer Singapore, 2018, 47–58 DOI:10.1007/978-981-13-1628-9_5

19. McGrath D, Wegener M, McIntyre T J, Savage C, Williamson M. Student experiences of virtual reality: a case study in learning special relativity. American Journal of Physics, 2010, 78(8): 862–868 DOI:10.1119/1.3431565

20. Ding N, Wang Y. Application of virtual reality in education: advantages and challenges. Modern Educational Technology, 2017, 27(2): 20–26 DOI:10.3969/j.issn.1009-8097.2017.02.003

21. Wolski R, Jagodziński P. Virtual laboratory: using a hand movement recognition system to improve the quality of chemical education. British Journal of Educational Technology, 2019, 50(1): 218–231 DOI:10.1111/bjet.12563

22. Abreu P A, Carvalho K d L, RabeloV W H, Castro H C. Computational strategy for visualizing structures and teaching biochemistry. Biochemistry and Molecular Biology Education, 2019, 47(1):76–84 DOI:10.1002/bmb.21199

23. Rui M A, Dong L Y, Chen X D, Wang J Z. Microscopic control system for biological experiment teaching based on 3D simulation technology. Computer Technology and Development, 2011, 21(6): 208–211 DOI:10.3969/j.issn.1673-629X.2011.06.055

24. Chang J W, Wang W P, Kim M S. Efficient collision detection using a dual OBB-sphere bounding volume hierarchy. Computer-Aided Design, 2010, 42(1): 50–57 DOI:10.1016/j.cad.2009.04.010

email E-mail this page

Articles by authors

VRIH