Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2020, 2(4): 368-380 Published Date:2020-8-20

DOI: 10.1016/j.vrih.2020.07.001

Cloud-to-end rendering and storage management for virtual reality in experimental education

Full Text: PDF (11) HTML (110)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Background
Real-time 3D rendering and interaction is important for virtual reality (VR) experimental education. Unfortunately, standard end-computing methods prohibitively escalate computational costs. Thus, reducing or distributing these requirements needs urgent attention, especially in light of the COVID-19 pandemic.
Methods
In this study, we design a cloud-to-end rendering and storage system for VR experimental education comprising two models: background and interactive. The cloud server renders items in the background and sends the results to an end terminal in a video stream. Interactive models are then lightweight-rendered and blended at the end terminal. An improved 3D warping and hole-filling algorithm is also proposed to improve image quality when the user’s viewpoint changes.
Results
We build three scenes to test image quality and network latency. The results show that our system can render 3D experimental education scenes with higher image quality and lower latency than any other cloud rendering systems.
Conclusions
Our study is the first to use cloud and lightweight rendering for VR experimental education. The results demonstrate that our system provides good rendering experience without exceeding computation costs.
Keywords: Clout-to-end render ; Cloud storage ; Virtual reality ; Experimental education

Cite this article:

Hongxin ZHANG, Jin ZHANG, Xue YIN, Kan ZHOU, Zhigeng PAN, Abdennour EI RHALIBI. Cloud-to-end rendering and storage management for virtual reality in experimental education. Virtual Reality & Intelligent Hardware, 2020, 2(4): 368-380 DOI:10.1016/j.vrih.2020.07.001

1. Yang J, Huang X, Liu X. An analysis of education inequality in China. International Journal of Educational Development, 2014, 37: 2–10 DOI:10.1016/j.ijedudev.2014.03.002

2. Burdea G, Coiffet P. Virtual Reality Technology, New York, Wiley, 1994

3. Richter T, Boehringer D, Jeschke S. LiLa: A European project on networked experiments. In: Automation, Communication and Cybernetics in Science and Engineering 2009/2010. Berlin, Heidelberg, Springer Berlin Heidelberg, 2010, 307–317 DOI:10.1007/978-3-642-16208-4_27

4. Koretsky M D, Amatore D, Barnes C, Kimura S. Enhancement of student learning in experimental design using a virtual laboratory. IEEE Transactions on Education, 2008, 51(1): 76–85 DOI:10.1109/te.2007.906894

5. Hashemipour M, Manesh H F, Bal M. A modular virtual reality system for engineering laboratory education. Computer Applications in Engineering Education, 2011, 19(2): 305–314 DOI:10.1002/cae.20312

6. Jara C A, Candelas F A, Puente S T, Torres F. Hands-on experiences of undergraduate students in Automatics and Robotics using a virtual and remote laboratory. Computers & Education, 2011, 57(4): 2451–2461 DOI:10.1016/j.compedu.2011.07.003

7. Torres F, Candelas F A, Puente S T, Pomares J, Gil P, Ortiz F G. Experiences with virtual environment and remote laboratory for teaching and learning robotics at the university of Alicante. International Journal of Engineering Education, 2006, 22(4): 766–776

8. Eldrdgem H G. A scalable graphics system for clusters. In: Proc. of ACM SIGRAPH 2001. Press ACM, LosAngeles, 2001

9. Lei X H, Jiang X H, Wang C H. Design and implementation of streaming media processing software based on RTMP. 2012 5th International Congress on Image and Signal Processing, 2012, 192‒196 DOI:10.1109/cisp.2012.6469981

10. Humphreys G, Houston M, Ng R, Frank R, Ahern S, Kirchner P D, Klosowski J T. Chromium: a stream-processing framework for interactive rendering on clusters. 2002, 21(3): 693–702

11. OnLive. http://www.onlive.com, 2012

12. Gaikai. http://www.gaikai.com, 2012

13. Ubitus. http://www.ubitus.com/, 2013

14. Ciinow. http://www.ciinow.com/, 2014

15. Huang C Y, Hsu C H, Chang Y C, Chen K T. GamingAnywhere: an open cloud gaming system. In: Proceedings of the 4th ACM Multimedia Systems Conference on-MMSys'13. Oslo, Norway, NewYork, Press ACM, 2013, 36–47 DOI:10.1145/2483977.2483981

16. Hoppe H. Progressive meshes. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques-SIGGRAPH '96. New York, ACM Press, 1996, 99–108 DOI:10.1145/237170.237216

17. Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Mesh optimization. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques-SIGGRAPH '93. New York, ACM Press, 1993,19–26 DOI:10.1145/166117.166119

18. Ma J P, Luo X N, Chen B, Chen H H. A geometry simplification method for mobile 3D graphics. Journal of Computer Research and Development, 2008, 45(8): 1395–1401

19. Jr. L M. An image-based approach to three-dimensional computer graphics. Thesis (Ph.D.)-University of North Carolina at Chapel Hill, 1997

20. Shi S, Nahrstedt K, Campbell R. A real-time remote rendering system for interactive mobile graphics. ACM Transactions on Multimedia Computing, Communications, and Applications, 2012, 8(3s): 1–20 DOI:10.1145/2348816.2348825

21. Lamport L. The part-time parliament. ACM Transactions on Computer Systems (TOCS), 1998, 16(2): 133–169 DOI:10.1145/279227.279229

22. Ongaro D, Ousterhout J. In search of an understandable consensus algorithm. In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). 2014, 305‒319

23. Hunt P, Konar M, Junqueira F P, Reed B. ZooKeeper: wait-free coordination for internet-scale systems. In: USENIX Annual Technical Conference. 2010

24. Dawson-Howe K M, Vernon D. Simple pinhole camera calibration. International Journal of Imaging Systems and Technology, 1994, 5(1): 1–6 DOI:10.1002/ima.1850050102

25. Wang Y, Ostermann J, Zhang Y Q. Video processing and communications. 2002

26. Wang Z, Lu L G, Bovik A C. Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication, 2004, 19(2): 121–132 DOI:10.1016/s0923-5965(03)00076-6

email E-mail this page

Articles by authors