Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2020, 2(3): 261-275 Published Date:2020-6-20

DOI: 10.1016/j.vrih.2020.05.004

Visual perception driven 3D building structure representa-tion from airborne laser scanning point cloud

Full Text: PDF (15) HTML (167)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Background
Three-dimensional (3D) building models with unambiguous roof plane geometry parameters, roof structure units, and linked topology provide essential data for many applications related to human activities in urban environments. The task of 3D reconstruction from point clouds is still in the development phase, especially the recognition and interpretation of roof topological structures.
Methods
This study proposes a novel visual perception-based approach to automatically decompose and reconstruct building point clouds into meaningful and simple parametric structures, while the associated mutual relationships between the roof plane geometry and roof structure units are expressed by a hierarchical topology tree. First, a roof plane extraction is performed by a multi-label graph cut energy optimization framework and a roof structure graph (RSG) model is then constructed to describe the roof topological geometry with common adjacency, symmetry, and convexity rules. Moreover, a progressive roof decomposition and refinement are performed, generating a hierarchical representation of the 3D roof structure models. Finally, a visual plane fitted residual or area constraint process is adopted to generate the RSG model with different levels of details.
Results
Two airborne laser scanning datasets with different point densities and roof styles were tested, and the performance evaluation metrics were obtained by International Society for Photogrammetry and Remote Sensing, achieving a correctness and accuracy of 97.7% and 0.29m, respectively.
Conclusions
The standardized assessment results demonstrate the effectiveness and robustness of the proposed approach, showing its ability to generate a variety of structural models, even with missing data.
Keywords: Point cloud ; Visual perception rules ; Building ; Structural ; 3D reconstruction

Cite this article:

Pingbo HU, Bisheng YANG. Visual perception driven 3D building structure representa-tion from airborne laser scanning point cloud. Virtual Reality & Intelligent Hardware, 2020, 2(3): 261-275 DOI:10.1016/j.vrih.2020.05.004

1. Zhu Q, Li S M, Hu H, Zhong R F, Wu B, Xie L F. Multiple point clouds data fusion method for 3D city modeling. Geomatics and Information Science of Wuhan University, 2018, 43(12), 1962–1971 (in Chinese) DOI:10.13203/j.whugis20180109

2. Yang B, Liang F, Huang R. Progress, challenges and perspectives of 3D LiDAR point cloud processing. 2017, 46(10):1509–1516 (in Chinese)

3. Deren L. Towards geospatial information technology in 5G/6G era. Acta Geodaetica et Cartographica Sinica, 2019, 48(12), 1475–1481 (in Chinese)

4. Yang B, Dong Z. Progress and perspective of point cloud intelligence. Acta Geodaetica et Cartographica Sinica, 2019, 48(12), 1575–1585 (in Chinese)

5. Shan J, Li Z X, Zhang W Y. Recent progress in large-scale 3D city modeling. Acta Geodaetica et Cartographica Sinica, 2019, 48(12), 1523–1541 (in Chinese)

6. Nan L, Sharf A, Zhang H, Cohen-Or D, Chen B. SmartBoxes for interactive urban reconstruction. In: ACM SIGGRAPH 2010 papers. Los Angeles, California, Association for Computing Machinery, 2010 DOI:93.10.1145/1833349.1778830

7. Demir I, Aliaga D G, Benes B. Procedural editing of 3D building point clouds. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, IEEE, 2015, 2147–2155 DOI:10.1109/iccv.2015.248

8. Xiong B, Oude Elberink S, Vosselman G. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 227–242 DOI:10.1016/j.isprsjprs.2014.01.007

9. Oesau S, Lafarge F, Alliez P. Planar shape detection and regularization in tandem. Computer Graphics Forum, 2016, 35(1): 203–215 DOI:10.1111/cgf.12720

10. Lin H, Gao J Z, Zhou Y, Lu G L, Ye M, Zhang C X, Liu L G, Yang R G. Semantic decomposition and reconstruction of residential scenes from LiDAR data. ACM Transactions on Graphics, 2013, 32(4): 1–10 DOI:10.1145/2461912.2461969

11. Verdie Y, Lafarge F, Alliez P. LOD generation for urban scenes. ACM Transactions on Graphics, 2015, 34(3): 1–14 DOI:10.1145/2732527

12. Duan L, Lafarge F. Towards Large-Scale City Reconstruction from Satellites. In: Computer Vision–ECCV 2016: 14th European Conference. Springer International Publishing, 2016, 89–104 DOI:10.1007/978-3-319-46454-1_6

13. Chauve A L, Labatut P, Pons J P. Robust piecewise-planar 3D reconstruction and completion from large-scale unstructured point data. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA, IEEE, 2010, 1261–1268 DOI:10.1109/cvpr.2010.5539824

14. Rouhani M, Lafarge F, Alliez P. Semantic segmentation of 3D textured meshes for urban scene analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 123: 124–139 DOI:10.1016/j.isprsjprs.2016.12.001

15. Jarząbek-Rychard M, Borkowski A. 3D building reconstruction from ALS data using unambiguous decomposition into elementary structures. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 118: 1–12 DOI:10.1016/j.isprsjprs.2016.04.005

16. Xu B, Jiang W S, Li L L. HRTT: a hierarchical roof topology structure for robust building roof reconstruction from point clouds. Remote Sensing, 2017, 9(4): 354 DOI:10.3390/rs9040354

17. Zhang C S, Zhang M M, Guo B X. Refinement of the 3D Mesh Model Driven by the Image Information, 2018, 47(7), 959–967 (in Chinese) DOI:10.11947/j.AGCS.2018.20170733

18. Musialski P, Wonka P, Aliaga D G, Wimmer M, van Gool L, Purgathofer W. A survey of urban reconstruction. Computer Graphics Forum, 2013, 32(6): 146–177 DOI:10.1111/cgf.12077

19. Yao Y, Luo Z, Li S, Fang T, Quan L. Mvsnet: Depth inference for unstructured multi-view stereo. In: Proceedings of Proceedings of the European Conference on Computer Vision (ECCV). 2018, 767–783 DOI:10.1007/978-3-030-01237-3_47

20. Chen Y, Shen S, Chen Y, Wang G. Graph-based parallel large scale structure from motion. 2019

21. Rottensteiner F, Sohn G, Gerke M, Wegner J D, Breitkopf U, Jung J. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 256–271 DOI:10.1016/j.isprsjprs.2013.10.004

22. Wang R S, Peethambaran J, Chen D. LiDAR point clouds to 3-D urban models: A review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 606–627 DOI:10.1109/jstars.2017.2781132

23. Tarsha-Kurdi F, Landes T, Grussenmeyer P. Extended RANSAC algorithm for automatic detection of building roof planes from LiDAR data. The Photogrammetric Journal of Finland, 2008, 21(1), 97–109

24. Karantzalos K, Paragios N. Large-scale building reconstruction through information fusion and 3-D priors. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2283–2296 DOI:10.1109/tgrs.2009.2039220

25. Huang X F. Building reconstruction from airborne laser scanning data. Geo-Spatial Information Science, 2013, 16(1): 35–44 DOI:10.1080/10095020.2013.774104

26. Perera G S N, Maas H G. Cycle graph analysis for 3D roof structure modelling: Concepts and performance. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 213–226 DOI:10.1016/j.isprsjprs.2014.04.017

27. Chen J, Chen B Q. Architectural modeling from sparsely scanned range data. International Journal of Computer Vision, 2008, 78(2/3): 223–236 DOI:10.1007/s11263-007-0105-5

28. Sampath A, Shan J. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1554–1567 DOI:10.1109/tgrs.2009.2030180

29. Zhou Q Y, Neumann U. 2.5D building modeling by discovering global regularities. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, IEEE, 2012, 326–333 DOI:10.1109/cvpr.2012.6247692

30. Poullis C. A framework for automatic modeling from point cloud data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2563–2575 DOI:10.1109/tpami.2013.64

31. Lafarge F, Mallet C. Building large urban environments from unstructured point data. In: 2011 International Conference on Computer Vision. Barcelona, Spain, IEEE, 2011, 1068–1075 DOI:10.1109/iccv.2011.6126353

32. Li M L, Wonka P, Nan L L. Manhattan-world urban reconstruction from point clouds. In: Computer Vision–ECCV 2016. Cham: Springer International Publishing, 2016, 54–69 DOI:10.1007/978-3-319-46493-0_4

33. Kelly T, Femiani J, Wonka P, Mitra N J. BigSUR: large-scale structured urban reconstruction. ACM Transactions on Graphics (TOG), 2017, 36(6), 204 DOI:10.1145/3130800.3130823

34. Vo A V, Truong-Hong L, Laefer D F, Bertolotto M. Octree-based region growing for point cloud segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 88–100 DOI:10.1016/j.isprsjprs.2015.01.011

35. Chen D, Zhang L Q, Mathiopoulos P T, Huang X F. A methodology for automated segmentation and reconstruction of urban 3-D buildings from ALS point clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(10): 4199–4217 DOI:10.1109/jstars.2014.2349003

36. Zhou G Y, Cao S, Zhou J J. Planar segmentation using range images from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 257–261 DOI:10.1109/lgrs.2015.2508505

37. Pham T T, Eich M, Reid I, Wyeth G. Geometrically consistent plane extraction for dense indoor 3D maps segmentation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, South Korea, IEEE, 2016, 4199–4204 DOI:10.1109/iros.2016.7759618

38. Zhou Q, Neumann U. 2.5D building modeling with topology control. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. 2011, 2489–2496 DOI:10.1109/CVPR.2011.5995611

39. Perera S N, Nalani H A, Maas H G. An automated method for 3D roof outline generation and regularization in airbone laser scanner data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, I-3: 281–286 DOI:10.5194/isprsannals-i-3-281-2012

40. Xiong X H, Adan A, Akinci B, Huber D. Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction, 2013, 31: 325–337 DOI:10.1016/j.autcon.2012.10.006

41. Bassier M, Vergauwen M, van Genechten B. Automated classification of heritage buildings for as-built bim using machine learning techniques. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-2/W2: 25–30 DOI:10.5194/isprs-annals-iv-2-w2-25-2017

42. Ma L, Sacks R, Kattel U, Bloch T. 3D object classification using geometric features and pairwise rlationships. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(2): 152–164 DOI:10.1111/mice.12336

43. Zhang L Q, Zhang L. Deep learning-based classification and reconstruction of residential scenes from large-scale point clouds. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1887–1897 DOI:10.1109/tgrs.2017.2769120

44. Desolneux A, Moisan L, Morel J M. Gestalt theory and computer vision. In: Seeing, Thinking and Knowing. Dordrecht: Kluwer Academic Publishers, 2004, 71–101 DOI:10.1007/1-4020-2081-3_4

45. Nan L L, Sharf A, Xie K, Wong T T, Deussen O, Cohen-Or D, Chen B Q. Conjoining Gestalt rules for abstraction of architectural drawings. ACM Transactions on Graphics, 2011, 30(6): 1–10 DOI:10.1145/2070781.2024219

46. Lun Z L, Zou C Q, Huang H B, Kalogerakis E, Tan P, Cani M P, Zhang H. Learning to group discrete graphical patterns. ACM Transactions on Graphics, 2017, 36(6): 1–11 DOI:10.1145/3130800.3130841

47. Isack H, Boykov Y. Energy-based geometric multi-model fitting. International Journal of Computer Vision, 2012, 97(2): 123–147 DOI:10.1007/s11263-011-0474-7

48. Delong A, Osokin A, Isack H N, Boykov Y. Fast approximate energy minimization with label costs. International Journal of Computer Vision, 2012, 96(1): 1–27 DOI:10.1007/s11263-011-0437-z

49. Rutzinger M, Rottensteiner F, Pfeifer N. A comparison of evaluation techniques for building extraction from airborne laser scanning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(1): 11–20 DOI:10.1109/jstars.2009.2012488

50. Rau J Y. A line-based 3D roof model reconstruction algorithm: tin-merging and reshaping (tmr). ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, I-3: 287–292 DOI:10.5194/isprsannals-i-3-287-2012

51. Sohn G, Jwa Y, Jung J, Kim H. An implicit regularization for 3D building rooftop modeling using airborne lidar data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, I-3: 305–310 DOI:10.5194/isprsannals-i-3-305-2012

52. Verma V, Kumar R, Hsu S. 3D building detection and modeling from aerial LIDAR data. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York, NY, USA, IEEE, 2006, 2213–2220 DOI:10.1109/cvpr.2006.12

email E-mail this page

Articles by authors

VRIH

BAIDU SCHOLAR

WANFANG DATA