Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2020, 2(3): 222-246 Published Date:2020-6-20

DOI: 10.1016/j.vrih.2020.05.002

Deep learning based point cloud registration: an overview

Full Text: PDF (20) HTML (316)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Point cloud registration aims to find a rigid transformation for aligning one point cloud to another. Such registration is a fundamental problem in computer vision and robotics, and has been widely used in various applications, including 3D reconstruction, simultaneous localization and mapping, and autonomous driving. Over the last decades, numerous researchers have devoted themselves to tackling this challenging problem. The success of deep learning in high-level vision tasks has recently been extended to different geometric vision tasks. Various types of deep learning based point cloud registration methods have been proposed to exploit different aspects of the problem. However, a comprehensive overview of these approaches remains missing. To this end, in this paper, we summarize the recent progress in this area and present a comprehensive overview regarding deep learning based point cloud registration. We classify the popular approaches into different categories such as correspondences-based and correspondences-free approaches, with effective modules, i.e., feature extractor, matching, outlier rejection, and motion estimation modules. Furthermore, we discuss the merits and demerits of such approaches in detail. Finally, we provide a systematic and compact framework for currently proposed methods and discuss directions of future research.
Keywords: Overview ; Point cloud registration ; Deep learning ; Graph neural networks

Cite this article:

Zhiyuan ZHANG, Yuchao DAI, Jiadai SUN. Deep learning based point cloud registration: an overview. Virtual Reality & Intelligent Hardware, 2020, 2(3): 222-246 DOI:10.1016/j.vrih.2020.05.002

1. Pomerleau F, Colas F, Siegwart R. A review of point cloud registration algorithms for mobile robotics. Foundations and Trends® in Robotics. 2015, 4(1):1–104 DOI:10.1561/2300000035

2. Fioraio N, Konolige K. Realtime visual and point cloud slam. In: Proceedings of the RGB-D workshop on advanced reasoning with depth cameras at robotics: Science and Systems Conf. (RSS). 2011

3. Lu W X, Wan G W, Zhou Y, Fu X Y, Yuan P F, Song S Y. DeepVCP: an end-to-end deep neural network for point cloud registration. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), IEEE, 2019, 12–21 DOI:10.1109/iccv.2019.00010

4. Min Z, Wang J L, Meng M Q H. Robust generalized point cloud registration using hybrid mixture model. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia, IEEE, 2018, 4812–4818 DOI:10.1109/icra.2018.8460825

5. Wang Y, Solomon J. Deep closest point: learning representations for point cloud registration. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), IEEE, 2019, 3522–3531 DOI:10.1109/iccv.2019.00362

6. Myronenko A, Song X B. Point set registration: coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262–2275 DOI:10.1109/tpami.2010.46

7. Liu X Y, Qi C R, Guibas L J. FlowNet3D: learning scene flow in 3D point clouds. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 529–537 DOI:10.1109/cvpr.2019.00062

8. Gu X Y, Wang Y J, Wu C R, Lee Y J, Wang P Q. HPLFlowNet: hierarchical permutohedral lattice FlowNet for scene flow estimation on large-scale point clouds. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 3249–3258 DOI:10.1109/cvpr.2019.00337

9. Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239–256 DOI:10.1109/34.121791

10. Bellekens B, Spruyt V, Berkvens R, Weyn M. A survey of rigid 3D pointcloud registration algorithms. In: AMBIENT 2014: the Fourth International Conference on Ambient Computing, Applications, Services and Technologies. Rome, Italy, 2014, 8–13

11. Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling. Quebec City, Quebec, Canada, IEEE, 2001, 145‒52 DOI:10.1109/im.2001.924423

12. Zhou T, Brown M, Snavely N, Lowe D G. Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1851–1858 DOI:10.1109/CVPR.2017.700

13. Shaked A, Wolf L. Improved stereo matching with constant highway networks and reflective confidence learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 4641-4650 DOI:10.1109/cvpr.2017.730

14. Dosovitskiy A, Fischer P, Ilg E, Häusser P, Hazirbas C, Golkov V, Smagt P V D, Cremers D, Brox T. FlowNet: learning optical flow with convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, IEEE, 2015, 2758–2766 DOI:10.1109/iccv.2015.316

15. Huang P H, Matzen K, Kopf J, Ahuja N, Huang J B. DeepMVS: learning multi-view stereopsis. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 2821–2830 DOI:10.1109/cvpr.2018.00298

16. Yi L, Su H, Guo X W, Guibas L. SyncSpecCNN: synchronized spectral CNN for 3D shape segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 6584–6592 DOI:10.1109/cvpr.2017.697

17. Maturana D, Scherer S. VoxNet: a 3D Convolutional Neural Network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany, IEEE, 2015, 922–928 DOI:10.1109/iros.2015.7353481

18. Su H, Maji S, Kalogerakis E, Learned-Miller E. Multi-view convolutional neural networks for 3D shape recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, IEEE, 2015, 945–953 DOI:10.1109/iccv.2015.114

19. Zhou Y, Tuzel O. VoxelNet: end-to-end learning for point cloud based 3D object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018: 4490–4499 DOI:10.1109/cvpr.2018.00472

20. Meng H Y, Gao L, Lai Y K, Manocha D. VV-net: voxel VAE net with group convolutions for point cloud segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), IEEE, 2019, 8499–8507 DOI:10.1109/iccv.2019.00859

21. Graham B, Engelcke M, Maaten L V D. 3D semantic segmentation with submanifold sparse convolutional networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 9224–9232 DOI:10.1109/cvpr.2018.00961

22. Chen X Z, Ma H M, Wan J, Li B, Xia T. Multi-view 3D object detection network for autonomous driving. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 6526–6534 DOI:10.1109/cvpr.2017.691

23. Charles R Q, Su H, Mo K C, Guibas L J. PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 652–660 DOI:10.1109/cvpr.2017.16

24. Qi C R, Yi L, Su H, Guibas L J. PointNet++: deep hierarchical feature learning on point sets in a metric space. 2017

25. Simonovsky M, Komodakis N. Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 3693–3702 DOI:10.1109/cvpr.2017.11

26. Wang Y, Sun Y B, Liu Z W, Sarma S E, Bronstein M M, Solomon J M. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 2019, 38(5): 1–12 DOI:10.1145/3326362

27. Li Y, Bu R, Sun M, Wu W, Di X, Chen B. Pointcnn: Convolution on x-transformed points. In: Advances in neural information processing systems. 2018, 820‒830

28. Klokov R, Lempitsky V. Escape from cells: deep kd-networks for the recognition of 3D point cloud models. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, IEEE, 2017, 863–872 DOI:10.1109/iccv.2017.99

29. Riegler G, Ulusoy A O, Geiger A. OctNet: learning deep 3D representations at high resolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 3577-3586 DOI:10.1109/cvpr.2017.701

30. Wu W X, Qi Z, Fuxin L. PointConv: deep convolutional networks on 3D point clouds. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 9621–9630 DOI:10.1109/cvpr.2019.00985

31. Atzmon M, Maron H, Lipman Y. Point convolutional neural networks by extension operators. ACM Transactions on Graphics, 2018, 37(4): 1–12 DOI:10.1145/3197517.3201301

32. Li J X, Chen B M, Lee G H. SO-net: self-organizing network for point cloud analysis. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 9397–9406 DOI:10.1109/cvpr.2018.00979

33. Qi C R, Liu W, Wu C X, Su H, Guibas L J. Frustum PointNets for 3D object detection from RGB-D data. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 918–927 DOI:10.1109/cvpr.2018.00102

34. Guo Y L, Wang H Y, Hu Q Y, Liu H, Liu L, Bennamoun M. Deep learning for 3D point clouds: a survey. 2019

35. Gelfand N, Mitra N J, Guibas L J, Pottmann H. Robust global registration. In: Symposium on geometry processing. 2005

36. Guo Y L, Bennamoun M, Sohel F, Lu M, Wan J W. 3D object recognition in cluttered scenes with local surface features: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2270–2287 DOI:10.1109/tpami.2014.2316828

37. Makadia A, Patterson A, Daniilidis K. Fully automatic registration of 3D point clouds. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York, NY, USA, IEEE, 2006, 1297–1304 DOI:10.1109/cvpr.2006.122

38. Ovsjanikov M, Mérigot Q, Mémoli F, Guibas L. One point isometric matching with the heat kernel. Computer Graphics Forum, 2010, 29(5): 1555–1564 DOI:10.1111/j.1467-8659.2010.01764.x

39. Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration. In: 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan, IEEE, 2009, 3212–3217 DOI:10.1109/robot.2009.5152473

40. Greenspan M, Yurick M. Approximate k-d tree search for efficient ICP. In: Fourth International Conference on 3-D Digital Imaging and Modeling. Banff, Alta., Canada, IEEE, 2003, 442–448 DOI:10.1109/im.2003.1240280

41. Nüchter A, Wulf O, Lingemann K, Hertzberg J, Wagner B, Surmann H. 3D mapping with semantic knowledge. In: RoboCup 2005: Robot Soccer World Cup IX. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, 335–346 DOI:10.1007/11780519_30

42. Pandey G, Savarese S, McBride J R, Eustice R M. Visually bootstrapped generalized ICP. In: 2011 IEEE International Conference on Robotics and Automation. Shanghai, China, IEEE, 2011, 2660–2667 DOI:10.1109/icra.2011.5980322

43. Akca D. Matching of 3D surfaces and their intensities. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(2): 112–121 DOI:10.1016/j.isprsjprs.2006.06.001

44. Park J, Zhou Q Y, Koltun V. Colored point cloud registration revisited. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, IEEE, 2017, 143–152 DOI:10.1109/iccv.2017.25

45. Zhou Q Y, Miller S, Koltun V. Elastic fragments for dense scene reconstruction. In: 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia, IEEE, 2013, 473–480 DOI:10.1109/iccv.2013.65

46. Pulli K. Multiview registration for large data sets. In: Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062). Ottawa, Ontario, Canada, IEEE, 1999, 160–168 DOI:10.1109/im.1999.805346

47. Chen Y, Medioni G. Object modelling by registration of multiple range images. Image and Vision Computing, 1992, 10(3): 145–155 DOI:10.1016/0262-8856(92)90066-c

48. Low K. Linear least-squares optimization for point-to-plane ICP surface registration. Chapel Hill, University of North Carolina, 2004(February): 2–4

49. Rusinkiewicz S. A symmetric objective function for ICP. ACM Transactions on Graphics, 2019, 38(4): 85 DOI:10.1145/3306346.3323037

50. Fitzgibbon A W. Robust registration of 2D and 3D point sets. Image and Vision Computing, 2003, 21(13/14): 1145–1153 DOI:10.1016/j.imavis.2003.09.004

51. Yang J L, Li H D, Campbell D, Jia Y D. Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11): 2241–2254 DOI:10.1109/tpami.2015.2513405

52. Rosen D M, Carlone L, Bandeira A S, Leonard J J. SE-Sync: a certifiably correct algorithm for synchronization over the special Euclidean group. The International Journal of Robotics Research, 2019, 38(2/3): 95–125 DOI:10.1177/0278364918784361

53. Maron H, Dym N, Kezurer I, Kovalsky S, Lipman Y. Point registration via efficient convex relaxation. ACM Transactions on Graphics, 2016, 35(4): 1–12 DOI:10.1145/2897824.2925913

54. Izatt G, Dai H K, Tedrake R. Globally optimal object pose estimation in point clouds with mixed-integer programming. In: Springer Proceedings in Advanced Robotics. Cham: Springer International Publishing, 2019, 695–710 DOI:10.1007/978-3-030-28619-4_49

55. Li J H, Zhang C H. Iterative matching point. 2019

56. Baker S, Matthews I. Lucas-kanade 20 years on: a unifying framework. International Journal of Computer Vision, 2004, 56(3): 221–255 DOI:10.1023/b:visi.0000011205.11775.fd

57. Huang X S, Mei G F, Zhang J. Feature-metric registration: a fast semi-supervised approach for robust point cloud registration without correspondences. 2020

58. Sarode V, Li X Q, Goforth H, Aoki Y, Dhagat A, Srivatsan R A, Lucey S, Choset H. One framework to register them all: PointNet encoding for point cloud alignment. 2019

59. Aoki Y, Goforth H, Srivatsan R A, Lucey S. PointNetLK: robust & efficient point cloud registration using PointNet. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 7156–7165 DOI:10.1109/cvpr.2019.00733

60. Groß J, Osep A, Leibe B. AlignNet-3D: fast point cloud registration of partially observed objects. 2019

61. Zeng A, Song S R, Nießner M, Fisher M, Xiao J X, Funkhouser T. 3DMatch: learning local geometric descriptors from RGB-D reconstructions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 199–208 DOI:10.1109/cvpr.2017.29

62. Gojcic Z, Zhou C F, Wegner J D, Wieser A. The perfect match: 3D point cloud matching with smoothed densities. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019: 5540–5549 DOI:10.1109/cvpr.2019.00569

63. Zhu A F, Yang J Q, Zhao W Y, Cao Z G. LRF-net: learning local reference frames for 3D local shape description and matching. 2020

64. Lu W X, Zhou Y, Wan G W, Hou S H, Song S Y. L3-net: towards learning based LiDAR localization for autonomous driving. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 6382–6391 DOI:10.1109/cvpr.2019.00655

65. Deng H W, Birdal T, Ilic S. PPFNet: global context aware local features for robust 3D point matching. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 195–205 DOI:10.1109/cvpr.2018.00028

66. Yew Z J, Lee G H. 3DFeat-net: weakly supervised local 3D features for point cloud registration. In: Computer Vision- ECCV 2018. Cham: Springer International Publishing, 2018, 630–646 DOI:10.1007/978-3-030-01267-0_37

67. Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface reconstruction from unorganized points. In: Proceedings of the 19th annual conference on Computer graphics and interactive techniques-SIGGRAPH'92. New York, ACM Press, 1992 DOI:10.1145/133994.134011

68. Birdal T, Ilic S. Point pair features based object detection and pose estimation revisited. In: 2015 International Conference on 3D Vision. Lyon, France, IEEE, 2015, 527–535 DOI:10.1109/3dv.2015.65

69. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Ł Kaiser, Polosukhin I. Attention is all you need. Advances in neural information processing systems. 2017, 5998–6008

70. Devlin J, Chang M W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. 2018

71. Santoro A, Raposo D, Barrett D G T, Malinowski M, Pascanu R, Battaglia P, Lillicrap T. A simple neural network module for relational reasoning. 2017

72. Wang X L, Girshick R, Gupta A, He K M. Non-local neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 7794–7803 DOI:10.1109/cvpr.2018.00813

73. Choy C, Park J, Koltun V. Fully convolutional geometric features. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), IEEE, 2019, 8957–8965 DOI:10.1109/iccv.2019.00905

74. Sun W W, Wang R S. Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 474–478 DOI:10.1109/lgrs.2018.2795531

75. Choy C, Gwak J, Savarese S. 4D spatio-temporal ConvNets: minkowski convolutional neural networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 3070–3079 DOI:10.1109/cvpr.2019.00319

76. Dai A, Chang A X, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 2432–2443 DOI:10.1109/cvpr.2017.261

77. Graham B. Sparse 3D convolutional neural networks. In: Procedings of the British Machine Vision Conference 2015. Swansea, British Machine Vision Association, 2015 DOI:10.5244/c.29.150

78. Rethage D, Wald J, Sturm J, Navab N, Tombari F. Fully-convolutional point networks for large-scale point clouds. In: Computer Vision–ECCV 2018. Cham: Springer International Publishing, 2018, 625–640 DOI:10.1007/978-3-030-01225-0_37

79. Jiang M Y, Wu Y R, Zhao T Q, Zhao Z L, Lu C W. PointSIFT: a SIFT-like network module for 3D point cloud semantic segmentation. 2018

80. Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. 1987, 726–740 DOI:10.1016/b978-0-08-051581-6.50070-2

81. Brachmann E, Krull A, Nowozin S, Shotton J, Michel F, Gumhold S, Rother C. DSAC: differentiable RANSAC for camera localization. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, IEEE, 2017, 2492–2500 DOI:10.1109/cvpr.2017.267

82. Pais G D, Ramalingam S, Govindu V M, Nascimento J C, Chellappa R, Miraldo P. 3DRegNet: a deep neural network for 3D point registration. 2019

83. Yi K M, Trulls E, Ono Y, Lepetit V, Salzmann M, Fua P. Learning to find good correspondences. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 2666–2674 DOI:10.1109/cvpr.2018.00282

84. He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, IEEE, 2016, 770–778 DOI:10.1109/cvpr.2016.90

85. Christopher C, Wei D, Vladlen K. Deep Global Registration. 2020

86. Probst T, Paudel D P, Chhatkuli A, van Gool L. Unsupervised learning of consensus maximization for 3D vision problems. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 929–938 DOI:10.1109/cvpr.2019.00102

87. Hu Y, Zhang D B, Ye J P, Li X L, He X F. Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2117–2130 DOI:10.1109/tpami.2012.271

88. Brachmann E, Rother C. Learning less is more-6D camera localization via 3D surface regression. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 4654–4662 DOI:10.1109/cvpr.2018.00489

89. Deng H W, Birdal T, Ilic S. 3D local features for direct pairwise registration. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2019, 3239–3248 DOI:10.1109/cvpr.2019.00336

90. Yang Y Q, Feng C, Shen Y R, Tian D. FoldingNet: point cloud auto-encoder via deep grid deformation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 206–215 DOI:10.1109/cvpr.2018.00029

91. Deng H W, Birdal T, Ilic S. PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors. In: Computer Vision–ECCV 2018. Cham: Springer International Publishing, 2018, 620–638 DOI:10.1007/978-3-030-01228-1_37

92. Wang Y, Solomon J M. PRNet: self-supervised learning for partial-to-partial registration. 2019

93. Gojcic Z, Zhou C F, Wegner J D, Guibas L J, Birdal T. Learning multiview 3D point cloud registration. 2020

94. Sekikawa Y, Suzuki T. Tabulated MLP for fast point feature embedding. 2019

95. Jang E, Gu S X, Poole B. Categorical reparameterization with Gumbel-Softmax. In: Proceedings of the International Conference on Learning Representations. Toulon, France, 2017

96. Savva M, Yu F, Su H, Aono M, Chen B, Cohen-Or D, Deng W, Su H, Bai S, Bai X. Shrec16 track: largescale 3D shape retrieval from shapenet core55. EG 2016 workshop on 3D Object Recognition. 2016 DOI:10.2312/3dor.20161092

97. Wu Z R, Song S R, Khosla A, Yu F, Zhang L G, Tang X O, Xiao J X. 3D ShapeNets: a deep representation for volumetric shapes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, IEEE, 2015, 1912–1920 DOI:10.1109/cvpr.2015.7298801

98. Choi S, Zhou Q Y, Miller S, Koltun V. A large dataset of object scans. 2016

99. Saxena A, Chung S H, Ng A Y. 3-D depth reconstruction from a single still image. International Journal of Computer Vision, 2008, 76(1): 53–69 DOI:10.1007/s11263-007-0071-y

100. Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, IEEE, 2012, 3354–3361 DOI:10.1109/cvpr.2012.6248074

101. Maier R, Kim K, Cremers D, Kautz J, Nießner M. Intrinsic3D: high-quality 3D reconstruction by joint appearance and geometry optimization with spatially-varying lighting. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, IEEE, 2017, 3133–3141 DOI:10.1109/iccv.2017.338

102. Turk G, Levoy M. The Stanford 3D scanning repository. Stanford University Computer Graphics Laboratory. 2005

103. Maddern W, Pascoe G, Linegar C, Newman P. 1 year, 1000 km: The Oxford RobotCar dataset. The International Journal of Robotics Research, 2017, 36(1): 3–15 DOI:10.1177/0278364916679498

104. Pomerleau F, Liu M, Colas F, Siegwart R. Challenging data sets for point cloud registration algorithms. The International Journal of Robotics Research, 2012, 31(14): 1705–1711 DOI:10.1177/0278364912458814

105. Chang A X, Dai A, Funkhouser T. Matterport3D: learning from RGB-D data in indoor environments. In: Proceedings of the International Conference on 3D Vision. Qingdao, China, IEEE, 2017 DOI:10.1109/3DV.2017.00081

106. Xiao J X, Owens A, Torralba A. SUN3D: a database of big spaces reconstructed using SfM and object labels. In: 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia, IEEE, 2013, 1625–1632 DOI:10.1109/iccv.2013.458

107. Uy M A, Pham Q H, Hua B S, Nguyen T, Yeung S K. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), IEEE, 2019, 1588–1597 DOI:10.1109/iccv.2019.00167

108. Hua B S, Pham Q H, Nguyen D T, Tran M K, Yu L F, Yeung S K. SceneNN: a scene meshes dataset with aNNotations. In: 2016 Fourth International Conference on 3D Vision (3DV). Stanford, CA, USA, IEEE, 2016, 92–101 DOI:10.1109/3dv.2016.18

109. Shilane P, Min P, Kazhdan M. The princeton shape benchmark. In: Proceedings of the International Conference on Shape Modeling Applications. IEEE, 2004 DOI:10.1109/SMI.2004.1314504

110. Rusu R B, Marton Z C, Blodow N, Beetz M. Persistent point feature histograms for 3D point clouds. In: Proceeding of the Int Conf Intel Autonomous Syst (IAS-10). Baden-Baden, Germany, 2008, 119–128 DOI:10.3233/978-1-58603-887-8-119

email E-mail this page

Articles by authors

VRIH