Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2020, 2(1): 28-42 Published Date:2020-2-20

DOI: 10.1016/j.vrih.2020.01.001

Virtual assembly framework for performance analysis of large optics

Full Text: PDF (2) HTML (114)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Background
A longstanding technological challenge exists regarding the precise assembly design and performance optimization of large optics in high power laser facilities, comprising a combination of many complex problems involving mechanical, material, and laser beam physics.
Method
In this study, an augmented virtual assembly framework based on a multiphysics analysis and digital simulation is presented for the assembly optimization of large optics. This framework focuses on the fundamental impact of the structural and assembly parameters of a product on its optical performance; three-dimensional simulation technologies improve the accuracy and measurability of the impact. Intelligent iterative computation algorithms have been developed to optimize the assembly plan of large optics, which are significantly affected by a series of constraints including dynamic loads and nonlinear ambient excitations.
Results
Finally, using a 410-mm-aperture frequency converter as the study case, we present a detailed illustration and discussion to validate the performance of the proposed system in large optics assembly and installation engineering.
Keywords: Virtual assembly ; Multiphysics ; Simulation ; Large optics

Cite this article:

Jinli ZHANG, Hui WANG, Bowu LIU, Dongya CHU, Xu XU, Guoqing PEI. Virtual assembly framework for performance analysis of large optics. Virtual Reality & Intelligent Hardware, 2020, 2(1): 28-42 DOI:10.1016/j.vrih.2020.01.001

1. Pfalzner S. An introduction to inertial confinement fusion. CRC Press. 2006

2. Hurst P, Grasz E, Wong H, Schmitt E, Simmons M. Optical assembly and alignment for the National Ignition Facility project. SPIE 3264, High-Power Lasers, 1998, 86–92

3. Cecil J, Kanchanapiboon A. Virtual engineering approaches in product and process design. The International Journal of Advanced Manufacturing Technology, 2007, 31(9/10): 846–856 DOI:10.1007/s00170-005-0267-7

4. Nee A Y C, Ong S K, Chryssolouris G, Mourtzis D. Augmented reality applications in design and manufacturing. CIRP Annals, 2012, 61(2): 657–679 DOI:10.1016/j.cirp.2012.05.010

5. Jayaram S, Jayaram U, Wang Y, Tirumali H, Lyons K, Hart P. VADE: a virtual assembly design environment. IEEE Computer Graphics and Applications, 1999, 19(6): 44–50 DOI:10.1109/38.799739

6. Yang R D, Fan X M, Wu D L, Yan J Q. Virtual assembly technologies based on constraint and DOF analysis. Robotics and Computer-Integrated Manufacturing, 2007, 23(4): 447–456 DOI:10.1016/j.rcim.2006.05.008

7. Fan X M, Gao F, Zhu H M, Wu D L, Yin Q. A real-virtual mapping method for mechanical product assembly process planning in virtual assembly environment//Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009: 550–559DOI:10.1007/978-3-642-02771-0_61

8. Brough J E, Schwartz M, Gupta S K, Anand D K, Kavetsky R, Pettersen R. Towards the development of a virtual environment-based training system for mechanical assembly operations. Virtual Reality, 2007, 11(4): 189–206 DOI:10.1007/s10055-007-0076-4

9. Auerbach J M, Barker C E, Burkhart S C, Couture S A, DeYoreo J J, Hackel L A, Hibbard R L, Liou L W, Norton M A, Wegner P J, Whitman P A. Frequency converter development for the National Ignition Facility. Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, 1999: 392–405

10. Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Yuan X D, Dai W J, Zhou W, Wang F, Xu D P, Xie X D, Feng B, Peng Z T, Guo L F, Chen Y B, Zhang X J, Liu L Q, Lin D H, Dang Z, Xiang Y, Zhang R, Wang F, Jia H T, Deng X W. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility. Matter and Radiation at Extremes, 2017, 2(5): 243–255 DOI:10.1016/j.mre.2017.07.004

11. Wegner P, Auerbach J, Biesiada T, Dixit S, Lawson J, Menapace J, Parham T, Swift D, Whitman P, Williams W. NIF final optics system: frequency conversion and beam conditioning. SPIE Photonics West, San Jose, California, 2004, 180–189

12. Lubin O, Gouedard C. Modeling of the effects of KDP crystal gravity sag on third-harmonic generation. Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, 1999: 802–808

13. Boyd R W. Nonlinear Optics, 3rd Edition, Academic Press, 2008

14. New G. Introduction to nonlinear optics. Cambridge: Cambridge University Press, 2009 DOI:10.1017/cbo9780511975851

15. Barker C, Auerbach J, Adams C, Bumpas S, Hibbard R, Lee C, Roberts D, Campbell J, Wegner P, Van Wonterghem B, Caird J. National Ignition Facility frequency converter development. Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, 1997: 197–202

16. Yoder P, Vukobratovich D. Opto-mechanical systems design. CRC Press, 2015 DOI:10.1201/b18147

17. Doyle K B, Genberg V L, Michels G J. Integrated optomechanical analysis, second edition. SPIE, 2012 DOI:10.1117/3.974624

18. Liang Y C, Su R F, Liu H T, Lu L H. Analysis of torque mounting configuration for nonlinear optics with large aperture. Optics Laser Technology, 2014, 58: 185–193 DOI:10.1016/j.optlastec.2013.11.017

19. Qin T H, Quan X S, Pei G Q, Yan H, Xu, Ye L, Du W F, Xiong Z, Liu C C. Surface control apparatus and method of optical transmission with large aperture based on self-adaptive force-moment technology. Optics Express, 2017, 25(13): 15358 DOI:10.1364/oe.25.015358

20. Wang H, Liu T Y, Zhang Z, Pei G Q, Ye L, Xu X. An investigation on the precision mounting process of large-aperture potassium dihydrogen phosphate converters based on the accurate prediction model. Precision Engineering, 2019, 57: 73–82 DOI:10.1016/j.precisioneng.2019.03.009

21. Hibbard R, Norton M, Wegner P. Design of precision mounts for optimizing the conversion efficiency of KDP crystals for the National Ignition Facility. Lawrence Livermore National Lab. 1998

22. Summers M, Hibbard R, Michie R, Liou L, William M. CAVE: The design of a precision metrology instrument for studying performance of KDP crystal. In: Optical Society of America 1998 Summer Topical Meeting, 1998

23. Guha S. Laser beam propagation in nonlinear optical media. CRC Press, 2013

email E-mail this page

Articles by authors

VRIH