Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2020, 2(1): 70-78 Published Date:2020-2-20

DOI: 10.1016/j.vrih.2019.10.005

Study of ghost image suppression in polarized catadioptric virtual reality optical systems

Full Text: PDF (6) HTML (126)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Background
This paper introduces a polarized catadioptric virtual reality optical system. With a focus on the issue of serious ghost image in the system, root causes are analyzed based on design principles and optical structure.
Methods
The distribution of stray light is simulated using Lighttools, and three major ghost paths are selected using the area of the diffuse spot,
Sd
and the energy ratio of the stray light, K as evaluation means. A method to restrain the ghost image through optimization of the structure of the optical system by controlling the focal power of the ghost image path is proposed. Results/Conclusions The results show that the
Sd
for the ghost image path increases by 40% and K decreases by 40% after optimization. Ghost image is effectively suppressed, which provides the theoretical basis and technical support for ghost suppression in a virtual reality optical system.
Keywords: Virtual Reality ; Optical System ; Ghost ; Focal power ; Optical Design

Cite this article:

Xu PENG, Zhenyu GAO, Yitong DING, Dongfeng ZHAO, Xiaoyu CHI. Study of ghost image suppression in polarized catadioptric virtual reality optical systems. Virtual Reality & Intelligent Hardware, 2020, 2(1): 70-78 DOI:10.1016/j.vrih.2019.10.005

1. Veron H, Hezel P J, Southard D A. Head-mounted displays for virtual reality. In: Helmet-and head-mounted displays and symbology design requirements. Orlando, FL, United States, SPIE, 1994, 2218: 41–50 DOI: 10.1117/12.177384

2. Geng Y, Gollier J, Wheelwright B, Peng F, Sulai Y, Lewis B, Chan N, Lam W S T, Fix A, Lanman D, Fu Y, Sohn A, Bryars B, Cardenas N, Yoon Y, McEldowney S. Viewing optics for immersive near-eye displays: pupil swim/size and weight/stray light. In: Digital Optics for Immersive Displays. Strasbourg, France, SPIE, 2018, 10676 DOI: 10.1117/12.2307671

3. LaRussa J A, Gill A T. The holographic pancake window TM. In: Visual Simulation and Image Realism I. San Diego, United States, SPIE, 1978, 120–129 DOI:10.1117/12.956898

4. Wang Y Q, Liu W Q, Meng X X, Fu H Y, Zhang D L, Kang Y S, Feng R, Wei Z L, Zhu X Q, Jiang G H. Development of an immersive virtual reality head-mounted display with high performance. Applied Optics, 2016, 55(25): 6969 DOI:10.1364/ao.55.006969

5. Wong T L, Yun Z S, Ambur G, Etter J. Folded optics with birefringent reflective polarizers. In: Digital Optical Technologies. Munich, Germany, SPIE, 2017 DOI:10.1117/12.2270266

6. Cen Z F, Li X T, Zhu Q H. Stray light analysis for optical system. Infrared and Laser Engineering, 2007, 36(3): 300–304(in Chinese)

7. Zhu Y, Zhang X, Wu Y X, Zhang J P, Shi G W, Wang L J. Optical system design and ghost analysis for ultraviolet star sensor. Infrared and Laser Engineering, 2016, 45(1): 118003 DOI:10.3788/m0001820164501.118003

8. Asadnezhad M, Eslamimajd A, Hajghassem H. Optical system design of star sensor and stray light analysis. Journal of the European Optical Society-Rapid Publications, 2018, 14: 9 DOI:10.1186/s41476-018-0078-8

9. Gollier J, Lam W S T. US Patent, 15/292, 2018

10. Chang W J, Geng H F, Teng G Q, Zheng C Q. Primary ghost image analysis of imaging system based on CODE V and LightTools. Journal of Applied Optics, 2017, 38(2): 618–622 DOI:10.5768/jao201738.0205002

11. Tiffany Lam W S, Chipman R. Balancing polarization aberrations in crossed fold mirrors. Applied Optics, 2015, 54(11): 3236 DOI:10.1364/ao.54.003236

12. Chipman R A, Lam W S T, Breckinridge J. Polarization aberration in astronomical telescopes. In: Polarization Science and Remote Sensing VII. San Diego, California, USA, SPIE, 2015 DOI:10.1117/12.2188921

13. Ambur G A, Wong T L, Ouderkirk A J, Yun Z. Thermoformed multilayer reflective polarizer, US Patent, 9599761, 2017

14. Liang Q. Physical optics. Beijing: Publishing House of Eletroics Industry, 2009

15. Zhang W. Accurate Formulas of Phase Retardation and Polarization Aberration for Waveplates in Oblique Incident Beam. Acta Optica Sinica, 1997, 8

16. Du B L, Li L, Huang Y F. Stray light analysis of an on-axis three-reflection space optical system. Chinese Optics Letters, 2010, 8(6): 569–572 DOI:10.3788/col20100806.0569

17. Zhu Y, Zhang X, Wu Y X, Qu H M, Zhang J Z, Wang L J. Research on the optical design and stray light suppression for off-axis reflective space astronomical telescope. Acta Optica Sinica, 2014, 34(8): 0822002 DOI:10.3788/aos201434.0822002

18. Likeness B K. Stray Light Simulation With Advanced Monte Carlo Techniques. In: Stray Light Problems in Optical Systems. Reston, United States, SPIE, 1977

email E-mail this page

Articles by authors

VRIH