Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2019, 1(4): 411-427 Published Date:2019-8-20

DOI: 10.1016/j.vrih.2019.08.001

Flexible and wearable healthcare sensors for visual reality health-monitoring

Full Text: PDF (14) HTML (198)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

Visual reality (VR) health-monitoring by flexible electronics provides a new avenue to remote and wearable medicine. The combination of flexible electronics and VR could facilitate smart remote disease diagnosis by real-time monitoring of the physiological signals and remote interaction between patient and physician. The flexible healthcare sensor is the most crucial unit in the flexible and wearable health-monitoring system, which has attracted much attention in recent years. This paper briefly reviews the progress in flexible healthcare sensors and VR healthcare devices. The flexible healthcare sensor is introduced with basic flexible materials, manufacturing techniques, and their applications in health-monitoring (such as blood/sweat detection and heart-rate tracking). VR healthcare devices for telemedicine diagnosis are discussed, and the smart remote diagnosis system using flexible and wearable healthcare sensors, and a VR device, is addressed.
Keywords: Flexible electronics ; Flexible healthcare sensors ; Visual reality ; Telemedicine

Cite this article:

Yue LI, Lu ZHENG, Xuewen WANG. Flexible and wearable healthcare sensors for visual reality health-monitoring. Virtual Reality & Intelligent Hardware, 2019, 1(4): 411-427 DOI:10.1016/j.vrih.2019.08.001

1. Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won S M, Tao H, Islam A, Yu K J, Kim T I, Chowdhury R, Ying M, Xu L, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto F G, Huang Y, Coleman T, Rogers J A. Epidermal electronics. Science, 2011, 333(6044): 838–843 DOI:10.1126/science.1206157

2. Gao W, Emaminejad S, Nyein H Y Y, Challa S, Chen K, Peck A, Fahad H M, Ota H, Shiraki H, Kiriya D, Lien D H, Brooks G A, Davis R W, Javey A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529(7587): 509–514 DOI:10.1038/nature16521

3. Wang X W, Gu Y, Xiong Z P, Cui Z, Zhang T. Electronic skin: silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals (adv. mater. 9/2014). Advanced Materials, 2014, 26(9): 1309 DOI:10.1002/adma.201470054

4. Sheridan C. Apple moves on health, drug developers shift into smart gear. Nature Biotechnology, 2014, 32(10): 965–966 DOI:10.1038/nbt1014-965a

5. Zang Y P, Zhang F J, Di C A, Zhu D B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2015, 2(2): 140–156 DOI:10.1039/c4mh00147h

6. Zhao W X, Bhushan A, Santamaria A, Simon M, Davis C. Machine learning: A crucial tool for sensor design. Algorithms, 2008, 1(2): 130–152 DOI:10.3390/a1020130

7. Vu C, Kim J. Human motion recognition by textile sensors based on machine learning algorithms. Sensors, 2018, 18(9): 3109 DOI:10.3390/s18093109

8. Shortliffe E H. The adolescence of AI in Medicine: Will the field come of age in the '90s? Artificial Intelligence in Medicine, 1993, 5(2): 93–106 DOI:10.1016/0933-3657(93)90011-q

9. Horn W. AI in medicine on its way from knowledge-intensive to data-intensive systems. Artificial Intelligence in Medicine, 2001, 23(1): 5–12 DOI:10.1016/s0933-3657(01)00072-0

10. Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minimally Invasive Therapy & Allied Technologies, 2019, 28(2): 73–81 DOI:10.1080/13645706.2019.1575882

11. Takei K, Honda W, Harada S, Arie T, Akita S. Toward flexible and wearable human-interactive health-monitoring devices. Advanced Healthcare Materials, 2015, 4(4): 487–500 DOI:10.1002/adhm.201400546

12. Zang Y P, Zhang F J, Di C A, Zhu D B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2015, 2(2): 140–156 DOI:10.1039/c4mh00147h

13. Lou Z, Wang L L, Shen G Z. Recent advances in smart wearable sensing systems. Advanced Materials Technologies, 2018, 3(12): 1800444 DOI:10.1002/admt.201800444

14. Khan Y, Ostfeld A E, Lochner C M, Pierre A, A C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 2016, 28(22): 4373-4395 DOI:10.1002/adma.201504366

15. Zhang T, Bai Y Y, Sun F Q. Recent advances in flexible self-healing materials and sensors. Scientia Sinica Informationis, 2018, 48(6): 650–669 DOI:10.1360/n112018-00117

16. Li T, Li Y, Zhang T. Materials, structures, and functions for flexible and stretchable biomimetic sensors. Accounts of Chemical Research, 2019, 52(2): 288–296 DOI:10.1021/acs.accounts.8b00497

17. Wang X W, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small, 2017, 13(25): 1602790 DOI:10.1002/smll.201602790

18. Zeng K, Guo Q, Gao S, Wu D M, Fan H J, Yang G. Studies on organosoluble polyimides based on a series of new asymmetric and symmetric dianhydrides: Structure/solubility and thermal property relationships. Macromolecular Research, 2012, 20(1): 10–20 DOI:10.1007/s13233-012-0007-4

19. Sekitani T, Zschieschang U, Klauk H, Someya T. Flexible organic transistors and circuits with extreme bending stability. Nature Materials, 2010, 9(12): 1015–1022 DOI:10.1038/nmat2896

20. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488–492 DOI:10.1038/nature03090

21. Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwödiauer R, Graz I, Bauer-Gogonea S, Bauer S, Someya T. An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013, 499(7459): 458–463 DOI:10.1038/nature12314

22. Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H, Bao Z N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology, 2011, 6(12): 788–792 DOI:10.1038/nnano.2011.184

23. Laukhina E, Pfattner R, Ferreras L R, Galli S, Mas-Torrent M, Masciocchi N, Laukhin V, Rovira C, Veciana J. Ultrasensitive piezoresistive all-organic flexible thin films. Advanced Materials, 2010, 22(9): 977–981 DOI:10.1002/adma.200902639

24. Gburek B, Wagner V. Influence of the semiconductor thickness on the charge carrier mobility in P3HT organic field-effect transistors in top-gate architecture on flexible substrates. Organic Electronics, 2010, 11(5): 814–819 DOI:10.1016/j.orgel.2010.01.023

25. Harada S, Kanao K, Yamamoto Y, Arie T, Akita S, Takei K. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano, 2014, 8(12): 12851–12857 DOI:10.1021/nn506293y

26. Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 2010, 9(10): 859–864 DOI:10.1038/nmat2834

27. Pan L J, Chortos A, Yu G H, Wang Y Q, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z N. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014, 5: 3002 DOI:10.1038/ncomms4002

28. Wang S, Weil B D, Li Y B, Wang K X, Garnett E, Fan S H, Cui Y. Large-area free-standing ultrathin single-crystal silicon as processable materials. Nano Letters, 2013, 13(9): 4393–4398 DOI:10.1021/nl402230v

29. Wang D P, Wang Q Z, Wang Z M, Jiang H Y, Zhang Z, Liu P, Xu C, Gao L Y. Study on the long-term behaviour of glass fibre in the tensile stress field. Ceramics International, 2019, 45(9): 11578–11583 DOI:10.1016/j.ceramint.2019.03.028

30. Rathmell A R, Bergin S M, Hua Y L, Li Z Y, Wiley B J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Advanced Materials, 2010, 22(32): 3558–3563 DOI:10.1002/adma.201000775

31. Baughman R H. Carbon nanotubes: the route toward applications. Science, 2002, 297(5582): 787–792 DOI:10.1126/science.1060928

32. Chung W H, Kim S H, Kim H S. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes. Scientific Reports, 2016, 6: 32086 DOI:10.1038/srep32086

33. Wu H, Kong D S, Ruan Z C, Hsu P C, Wang S, Yu Z F, Carney T J, Hu L B, Fan S H, Cui Y. A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 2013, 8(6): 421–425 DOI:10.1038/nnano.2013.84

34. Gullapalli H, Vemuru V S M, Kumar A, Botello-Mendez A, Vajtai R, Terrones M, Nagarajaiah S, Ajayan P M. Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small, 2010, 6(15): 1641–1646 DOI:10.1002/smll.201000254

35. Xiao X, Yuan L Y, Zhong J W, Ding T P, Liu Y, Cai Z X, Rong Y G, Han H W, Zhou J, Wang Z L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Advanced Materials, 2011, 23(45): 5440–5444 DOI:10.1002/adma.201103406

36. Sun Y, Rogers J . Inorganic semiconductors for flexible electronics. Advanced Materials, 2007, 19(15): 1897–1916 DOI:10.1002/adma.200602223

37. Pajor-Świerzy A, Socha R, Pawłowski R, Warszyński P, Szczepanowicz K. Application of metallic inks based on nickel-silver core–shell nanoparticles for fabrication of conductive films. Nanotechnology, 2019, 30(22): 225301 DOI:10.1088/1361-6528/ab0467

38. Joseph A M, Nagendra B, Bhoje Gowd E, Surendran K P. Screen-printable electronic ink of ultrathin boron nitride nanosheets. ACS Omega, 2016, 1(6): 1220–1228 DOI:10.1021/acsomega.6b00242

39. Kwon Y J, Park Y, Lee W. Inkjet-printed organic transistors based on organic semiconductor/insulating polymer blends. Materials, 2016, 9(8): 650 DOI:10.3390/ma9080650

40. Zhang F, Tuck C, Hague R, He Y F, Saleh E, Li Y, Sturgess C, Wildman R. Inkjet printing of polyimide insulators for the 3D printing of dielectric materials for microelectronic applications. Journal of Applied Polymer Science, 2016, 133(18): 11 DOI:10.1002/app.43361

41. Kim Y Y, Yang T Y, Suhonen R, Välimäki M, Maaninen T, Kemppainen A, Jeon N J, Seo J. Photovoltaic devices: gravure-printed flexible perovskite solar cells: toward roll-to-roll manufacturing (adv. sci. 7/2019). Advanced Science, 2019, 6(7): 1970044 DOI:10.1002/advs.201970044

42. Ferri J, Perez Fuster C, Llinares Llopis R, Moreno J, Garcia‑Breijo E. Integration of a 2D touch sensor with an electroluminescent display by using a screen-printing technology on textile substrate. Sensors, 2018, 18(10): 3313 DOI:10.3390/s18103313

43. Khan S, Ali S, Bermak A. Recent developments in printing flexible and wearable sensing electronics for healthcare applications. Sensors, 2019, 19(5): 1230 DOI:10.3390/s19051230

44. Jeffries A M, Mamidanna A, Ding L, Hildreth O J, Bertoni M I. Low-temperature drop-on-demand reactive silver inks for solar cell front-grid metallization. IEEE Journal of Photovoltaics, 2017, 7(1): 37–43 DOI:10.1109/jphotov.2016.2621351

45. Uzum A, Kanda H, Ito S. Perovskite/crystalline silicon tandem solar cells fabricated by non-vacuum-process. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). New Orleans, LA, New York, USA, IEEE, 2015 DOI:10.1109/pvsc.2015.7355659

46. Yamamoto Y, Harada S, Yamamoto D, Honda W, Arie T, Akita S, Takei K. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Science Advances, 2016, 2(11): e1601473 DOI:10.1126/sciadv.1601473

47. Guo R, Yao S Y, Sun X Y, Liu J. Semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing: A general method towards fast fabrication of flexible electronics. Science China Materials, 2019, 62(7): 982–994 DOI:10.1007/s40843-018-9400-2

48. Khan Y, Han D, Pierre A, Ting J, Wang X C, Lochner C M, Bovo G, Yaacobi-Gross N, Newsome C, Wilson R, Arias A C. A flexible organic reflectance oximeter array. Proceedings of the National Academy of Sciences, 2018, 115(47): E11015–E11024 DOI:10.1073/pnas.1813053115

49. Gao W, Emaminejad S, Nyein H Y Y, Challa S, Chen K, Peck A, Fahad H M, Ota H, Shiraki H, Kiriya D, Lien D H, Brooks G A, Davis R W, Javey A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529(7587): 509–514 DOI:10.1038/nature16521

50. Huang K H, Tan F, Wang T D, Yang Y J. A highly sensitive pressure-sensing array for blood pressure estimation assisted by machine-learning techniques. Sensors, 2019, 19(4): 848 DOI:10.3390/s19040848

51. Tao X L, Liao S L, Wang S Q, Wu D, Wang Y P. Body compatible thermometer based on green electrolytes. ACS Sensors, 2018, 3(7): 1338–1346 DOI:10.1021/acssensors.8b00249

52. Bihar E, Deng Y X, Miyake T, Saadaoui M, Malliaras G G, Rolandi M. A Disposable paper Breathalyzer with an alcohol sensing organic electrochemical transistor. Scientific Reports, 2016, 6: 27582 DOI:10.1038/srep27582

53. Oh S Y, Hong S Y, Jeong Y R, Yun J, Park H, Jin S W, Lee G, Oh J H, Lee H, Lee S S, Ha J S. Skin-attachable, stretchable electrochemical sweat sensor for glucose and ph detection. ACS Applied Materials & Interfaces, 2018, 10(16): 13729–13740 DOI:10.1021/acsami.8b03342

54. An X, Stylios G. A hybrid textile electrode for electrocardiogram (ECG) measurement and motion tracking. Materials 2018, 11(10): 1887 DOI:10.3390/ma11101887

55. Sekine T, Sugano R, Tashiro T, Sato J, Takeda Y, Matsui H, Kumaki D, Domingues dos Santos F, Miyabo A, Tokito S. Author correction: fully printed wearable vital sensor for human pulse rate monitoring using ferroelectric polymer. Scientific Reports, 2018, 8: 6359 DOI:10.1038/s41598-018-22746-3

56. Boutry C M, Beker L, Kaizawa Y, Vassos C, Tran H, Hinckley A C, Pfattner R, Niu S M, Li J H, Claverie J, Wang Z, Chang J, Fox P M, Bao Z N. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nature Biomedical Engineering, 2019, 3(1): 47–57 DOI:10.1038/s41551-018-0336-5

57. Bandodkar A J, Gutruf P, Choi J, Lee K, Sekine Y, Reeder J T, Jeang W J, Aranyosi A J, Lee S P, Model J B, Ghaffari R, Su C J, Leshock J P, Ray T, Verrillo A, Thomas K, Krishnamurthi V, Han S, Kim J, Krishnan S, Hang T, Rogers J A. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Science Advances, 2019, 5(1): eaav3294 DOI:10.1126/sciadv.aav3294

58. Lei Y J, Zhao W L, Zhang Y Z, Jiang Q, He J H, Baeumner A J, Wolfbeis O S, Wang Z L, Salama K N, Alshareef H N. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small, 2019, 15(19): 1901190 DOI:10.1002/smll.201901190

59. Smith R E, Totti S, Velliou E, Campagnolo P, Hingley-Wilson S M, Ward N I, Varcoe J R, Crean C. Development of a novel highly conductive and flexible cotton yarn for wearable pH sensor technology. Sensors and Actuators B: Chemical, 2019, 287: 338–345 DOI:10.1016/j.snb.2019.01.088

60. Lu Y, Jiang K, Chen D, Shen G Z. Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy, 2019, 58: 624–632 DOI:10.1016/j.nanoen.2019.01.084

61. Park S, Heo S W, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino M, Yokota T, Fukuda K, Tajima K, Someya T. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 2018, 561(7724): 516–521 DOI:10.1038/s41586-018-0536-x

62. Wang N X, Yang A N, Fu Y, Li Y Z, Yan F. Functionalized organic thin film transistors for biosensing. Accounts of Chemical Research, 2019, 52(2): 277–287 DOI:10.1021/acs.accounts.8b00448

63. Liu Z, Xu J, Chen D, Shen G Z. Flexible electronics based on inorganic nanowires. Chemical Society Reviews, 2015, 44(1): 161–192 DOI:10.1039/c4cs00116h

64. An R, Zhang B M, Han L L, Wang X D, Zhang Y L, Shi L Y, Ran R. Strain-sensitivity conductive MWCNTs composite hydrogel for wearable device and near-infrared photosensor. Journal of Materials Science, 2019, 54(11): 8515–8530 DOI:10.1007/s10853-019-03438-3

65. Xu M X, Li F, Zhang Z Y, Shen T, Zhang Q, Qi J J. Stretchable and multifunctional strain sensors based on 3D graphene foams for active and adaptive tactile imaging. Science China Materials, 2019, 62(4): 555–565 DOI:10.1007/s40843-018-9348-8

66. Park S H, Park J, Park H N, Park H M, Song J Y. Flexible galvanic skin response sensor based on vertically aligned silver nanowires. Sensors and Actuators B: Chemical, 2018, 273: 804–808 DOI:10.1016/j.snb.2018.06.125

67. Cao F. Overview of research and development of VR technology at home and abroad. science and technology information, 2019, 5 (in Chinese DOI:10.3969/j.issn.1001-8972.2019.05.010

68. Benham S, Kang M, Grampurohit N. Immersive virtual reality for the management of pain in community-dwelling older adults. OTJR: Occupation, Participation and Health, 2019, 39(2): 90–96 DOI:10.1177/1539449218817291

69. Gugenheimer J, Dobbelstein D, Winkler C, Haas G, Rukzio E. FaceTouch. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. Santa Clara, California, USA, ACM Press, 2016 DOI:10.1145/2851581.2890242

70. Vega-Medina L, Perez-Gutierrez B, Tibamoso G, Uribe-Quevedo A, Jaimes N. VR central venous access simulation system for newborns. In: 2014 IEEE Virtual Reality (VR). Minneapolis, MN, USA, IEEE, 2014 DOI:10.1109/vr.2014.6802081

71. Wang F, Burdet E, Vuillemin R, Bleuler H. Knot-tying with visual and force feedback for VR laparoscopic training. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, China, IEEE, 2005 DOI:10.1109/iembs.2005.1615801

72. Gerber S M, Jeitziner M M, Wyss P, Chesham A, Urwyler P, Müri R M, Jakob S M, Nef T. Visuo-acoustic stimulation that helps you to relax: A virtual reality setup for patients in the intensive care unit. Scientific Reports, 2017, 7: 13228 DOI:10.1038/s41598-017-13153-1

73. Park H S, Yoon J W, Kim J, Iseki K, Hallett M. Development of a VR-based treadmill control interface for gait assessment of patients with Parkinson's disease. In: 2011 IEEE International Conference on Rehabilitation Robotics.Zurich, New York, USA, IEEE, 2011 DOI:10.1109/icorr.2011.5975463

74. Yang X Z, Ren Y Q. Development of virtual reality and EEG linkage system and exploration of its educational research function. Distance Education Journal, 2019, 37(1): 45–52(in Chinese)

75. Rasool S, Sourin A, Xia P, Weng B, Kagda F. Towards hand-eye coordination training in virtual knee arthroscopy. 2013 DOI:10.1145/2503713.2503715.

76. Xia P, Sourin A. Design and implementation of a haptics-based virtual venepuncture simulation and training system. 2012

77. Powell W, Powell V, Simmonds M. Virtual reality for gait rehabilitation-promises, proofs and preferences. In: Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments. Rhodes, Greece, ACM Press, 2014 DOI:10.1145/2674396.2674450

78. Paul D M, Jacqueline S H, Jon W S, Courtney E S, Beth M O. Illusory movement perception improves motor control for prosthetic hands. Science Translational Medicine, 2018, 10(432): eaao6990

email E-mail this page

Articles by authors

VRIH

BAIDU SCHOLAR

WANFANG DATA