Chinese
Adv Search
Home | Accepted | Article In Press | Current Issue | Archive | Special Issues | Collections | Featured Articles | Statistics

2019, 1(4): 341-385 Published Date:2019-8-20

DOI: 10.1016/j.vrih.2019.01.001

Overview of 3D Scene Viewpoints evaluation method

Full Text: PDF (27) HTML (153)

Export: EndNote | Reference Manager | ProCite | BibTex | RefWorks

Abstract:

The research on 3D scene viewpoints has been a frontier problem in computer graphics and virtual reality technology. In a pioneering study, it had been extensively used in virtual scene understanding, image-based modeling, and visualization computing. With the development of computer graphics and the human-computer interaction, the viewpoint evaluation becomes more significant for the comprehensive understanding of complex scenes. The high-quality viewpoints could navigate observers to the region of interest, help subjects to seek the hidden relations of hierarchical structure, and improve the efficiency of virtual exploration. These studies later contributed to research such as robot vision, dynamic scene planning, virtual driving and artificial intelligence navigation.The introduction of visual perception had The introduction of visual perception had contributed to the inspiration of viewpoints research, and the combination with machine learning made significant progress in the viewpoints selection. The viewpoints research also has been significant in the optimization of global lighting, visualization calculation, 3D supervising rendering, and reconstruction of a virtual scene. Additionally, it has a huge potential in novel fields such as 3D model retrieval, virtual tactile analysis, human visual perception research, salient point calculation, ray tracing optimization, molecular visualization, and intelligent scene computing.
Keywords: View point ; Three-dimensional scene ; Visual perception ; Mesh saliency ; Curvature

Cite this article:

Yan ZHANG, Guangzheng FEI. Overview of 3D Scene Viewpoints evaluation method. Virtual Reality & Intelligent Hardware, 2019, 1(4): 341-385 DOI:10.1016/j.vrih.2019.01.001

1. Palmer S, Rosch E, Chase P. Canonical perspective and the perception of objects. Attention & Performance, 1981, 9: 135–151

2. Koenderink J J. An internal representation for solid shape based on the topological properties of the apparent contour. Ablex Publishing Corp, 1987: 257–285

3. Biederman I. Recognition-by-components: A theory of human image understanding. Psychological Review, 1987, 94(2): 115–147 DOI:10.1037/0033-295x.94.2.115

4. Blanz V, Tarr M J, Bülthoff H H. What object attributes determine canonical views? Perception, 1999, 28(5): 575–599 DOI:10.1068/p2897

5. Kamada T, Kawai S. A simple method for computing general position in displaying three-dimensional objects. Computer Vision, Graphics, and Image Processing, 1988, 41(1): 43–56 DOI:10.1016/0734-189x(88)90116-8

6. Roberts D R, Marshall A D. Viewpoint selection for complete surface coverage of three dimensional objects. In: Proc. of the British Machine Vision Conference, 1998, 2

7. Plemenos D, Benayada M. Intelligent Display Techniques in Scene Modelling. New Techniques to Automatically Compute Good Views. In: International Conference Graphi. St Petersburg, Russia: 1996

8. Fleishman S, Cohen-Or D, Lischinski D. Automatic camera placement for image-based modeling. In: Proceedings of Seventh Pacific Conference on Computer Graphics and Applications. Seoul, South Korea: 1999, 12–20 DOI:10.1109/PCCGA.1999.803344

9. Barral P, Dorme G, Plemenos D. Visual understanding of a scene by automatic movement of a camera, 1999.

10. Vázquez P P, Feixas M, Sbert M, Heidrich W. Viewpoint Selection Using Viewpoint Entropy. In: Vision Modeling & Visualization Conference. Stuttgart, Germany: 2001, 273–280 DOI:10.1109/MCG.1984.276095

11. Gooch B, Reinhard E, Moulding C, Shirley P. Artistic Composition for Image Creation. Eurographics. Vienna: Springer Vienna, 2001: 83–88 DOI:10.1007/978-3-7091-6242-2_8

12. Feixas M. An information theory framework for the study of the complexity of visibility and radiosity in a scene. University of Catalonia, 2002

13. Page D L, Koschan A F, Sukumar S R, Roui-Abidi B, Abidi M A. Shape analysis algorithm based on information theory. Proceedings 2003 International Conference. Barcelona, Spain: 2003, 1–229 DOI:10.1109/ICIP.2003.1246940

14. Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation. International Journal of Computer Vision, 2004, 59(2): 167–181 DOI:10.1023/b:visi.0000022288.19776.77

15. Plemenos D, Sbert M, Feixas M, Gonzalez F. Viewpoint Quality: Measures and Applications. Girona, France: 2005, 1–8

16. Katz S, Leifman G, Tal A. Mesh segmentation using feature point and core extraction. The Visual Computer, 2005, 21(8/9/10): 649–658 DOI:10.1007/s00371-005-0344-9

17. Lee C H, Varshney A, Jacobs D W. Mesh saliency. Los Angeles, California: ACM, 2005: 659–666 DOI:10.1145/1186822.1073244

18. Polonsky O, Patané G, Biasotti S, Gotsman C, Spagnuolo M. What’s in an image? The Visual Computer, 2005, 21(8–10): 840–847 DOI:10.1007/s00371-005-0326-y

19. Attene M, Katz S, Mortara M, Patane G, Spagnuolo M, Tal A. Mesh segmentation―A comparative study. In: IEEE International Conference on Shape Modeling and Applications, Matsushima, Japan: 2006, 7 DOI:10.1109/SMI.2006.24

20. Shilane P, Funkhouser T. Distinctive regions of 3D surfaces. ACM Transactions on Graphics, 2007, 26(2): 7 DOI:10.1145/1243980.1243981

21. Fu H, Cohen-Or D, Dror G, Sheffer A. Upright orientation of man-made objects. New York, NY, USA: ACM, 2008, 1–7

22. Vieira T, Bordignon A, Peixoto A, Tavares G, Lopes H, Velho L, Lewiner T. Learning good views through intelligent galleries. Computer Graphics Forum, 2009, 28(2): 717–726 DOI:10.1111/j.1467-8659.2009.01412.x

23. Laga H. Semantics-driven approach for automatic selection of best views of 3D shapes. In: Proceedings of the 3rd Eurographics Conference on 3d Object Retrieval. Norrk, Sweden: 2010, 15–22

24. Biedl T C, Hasan M, López-Ortiz A. Efficient view point selection for silhouettes of convex polyhedra. Computational Geometry, 2011, 44(8): 399–408 DOI:10.1016/j.comgeo.2011.04.001

25. Serin E, Doger C, Balcisoy S. 3D Object Exploration Using Viewpoint and Mesh Saliency Entropies. In: Computer and Information Sciences II. London: Springer London, 2011: 299–305 DOI:10.1007/978-1-4471-2155-8_38

26. Leifman G, Shtrom E, Tal A. Surface regions of interest for viewpoint selection. In: IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012, 414–421 DOI:10.1109/CVPR.2012.6247703

27. Serin E, Sumengen S, Balcisoy S. Representational image generation for 3D objects. The Visual Computer, 2013, 29(6–8): 675–684 DOI:10.1007/s00371-013-0805-5

28. Han H L, Li J, Wang W C, Zhao H W, Hua M. View selection of 3D objects based on saliency segmentation. 2014 International Conference on Virtual Reality and Visualization. Shenyang, China: 2014, 214–219 DOI:10.1109/ICVRV.2014.12

29. Xing L, Zhang X, Wang C C L, Hui K. Highly Parallel Algorithms for Visual-Perception-Guided Surface Remeshing. IEEE Computer Graphics and Applications, 2014, 34(1): 52–64 DOI:10.1109/MCG.2013.84

30. Su H, Qi C R, Li Y, Guibas L J. Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3d model views. In: Proceedings of the IEEE International Conference on Computer Vision, 2015, 2686–2694 DOI:10.1109/ICCV.2015.308

31. Shi N, Tao T. CNNs based Viewpoint Estimation for Volume Visualization. ACM Transactions on Intelligent Systems and Technology (TIST), 2016, 1(1): 1

32. Massa F, Marlet R, Aubry M. Crafting a multi-task CNN for viewpoint estimation. British Machine Vision Conference. York, United Kingdom, Machine Vision Association, 2016

33. Leifman G, Shtrom E, Tal A. Surface regions of interest for viewpoint selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(12): 2544–2556 DOI:10.1109/tpami.2016.2522437

34. Jeong S W, Sim J Y. Saliency detection for 3D surface geometry using semi-regular meshes. IEEE Transactions on Multimedia, 2017, 19(12): 2692–2705 DOI:10.1109/tmm.2017.2710802

35. Engler T, Wuensche H J. Recursive 3D scene estimation with multiple camera pairs. In: Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). Montreal, QC, Canada, 2017, 1–6 DOI:10.1109/IPTA.2017.8310129

36. Sawhney R, Li F, Christensen H I, Isbell C L. Purely Geometric Scene Association and Retrieval-A Case for Macro Scale 3D Geometry. arXiv preprint arXiv: 1808. 01343, 2018

37. Secord A, Lu J W, Finkelstein A, Singh M, Nealen A. Perceptual models of viewpoint preference. ACM Transactions on Graphics, 2011, 30(5): 1–12 DOI:10.1145/2019627.2019628

38. Feldman J, Singh M. Information along contours and object boundaries. Psychological Review, 2005, 112(1): 243–252 DOI:10.1037/0033-295x.112.1.243

39. Stoev S L, Strasser W. A case study on automatic camera placement and motion for visualizing historical data. In: IEEE Visualization. Boston, MA, USA: IEEE, 2002, 545–548 DOI:10.1109/VISUAL.2002.1183826

40. Yang Y L, Shen C H. Multi-scale salient features for analyzing 3D shapes. Journal of Computer Science and Technology, 2012, 27(6): 1092–1099 DOI:10.1007/s11390-012-1287-z

41. Sander F, Krueger F. Gestaltpsychologie und Kunsttheorie: ein Beitrag zur Psychologie architektonischer Gestalten. Beck, 1932

42. Seligmann D D, Feiner S. Automated generation of intent-based 3D Illustrations. ACM SIGGRAPH Computer Graphics, 1991, 25(4): 123–132 DOI:10.1145/127719.122732

43. Karp P, Feiner S. Issues in the automated generation of animated presentations. Graphics Interface, 1990, 90: 39–48

44. Kowalski M A, Hughes J F, Rubin C B, Ohya J. User-guided composition effects for art-based rendering. In: ACM Symposium on Interactive 3D Graphic. New York, NY, USA, ACM, 2001, 99–102 DOI:10.1145/364338.364374

45. Sokolov D, Plemenos D, Tamine K. Methods and data structures for virtual world exploration. The Visual Computer, 2006, 22(7): 506–516 DOI:10.1007/s00371-006-0025-3

46. Sokolov D, Plemenos D, Herder J. High level methods for scene exploration. Journal of Virtual Reality and Broadcasting, 2006, 3(12): 1860–2037

47. Colin C. A System for Exploring the Universe of Polyhedral Shapes. In: Eurographics. Nice, France: 1988

48. Gao T H, Wang W C, Han H L. Efficient view selection by measuring proxy information. Computer Animation and Virtual Worlds, 2016, 27(3/4): 351–357 DOI:10.1002/cav.1698

49. Chen X B, Saparov A, Pang B, Funkhouser T. Schelling points on 3D surface meshes. ACM Transactions on Graphics, 2012, 31(4): 1–12 DOI:10.1145/2185520.2185525

50. Loken B. Perspectives on persuasion and visual information processing. ACR North American Advances, 1984

51. Kucerova J, Varhanikova I, Cernekova Z. Best view methods suitability for different types of objects. In: Proceedings of the 28th Spring Conference on Computer Graphics. Budmerice, Slovakia: ACM, 2012: 55–61 DOI:10.1145/2448531.2448538

52. Goldstein E B. Encyclopedia of Perception. SAGE Publications, 2010

53. Coe M. Human Factors for technical communicators. Wiley Technical Communication Library, 2010

54. Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259 DOI:10.1109/34.730558

55. Noser H, Renault O, Thalmann D, Thalmann N M. Navigation for digital actors based on synthetic vision, memory, and learning. Computers & Graphics, 1995, 19(1): 7–19 DOI:10.1016/0097-8493(94)00117-h

56. Koch C, Ullman S. Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry. In: Matters of Intelligence. Dordrecht: Springer Netherlands, 1987: 115–141 DOI:10.1007/978-94-009-3833-5_5

57. Tsotsos J K, Culhane S M, Kei Wai W Y, Lai Y Z, Davis N, Nuflo F. Modeling visual attention via selective tuning. Artificial Intelligence, 1995, 78(1/2): 507–545 DOI:10.1016/0004-3702(95)00025-9

58. Milanese R, Wechsler H, Gil S, Bost J M, Pun T. Integration of bottom-up and top-down cues for visual attention using non-linear relaxation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: 1994, 781–785 DOI:10.1109/CVPR.1994.323898

59. Privitera C M, Stark L W. Focused JPEG encoding based upon automatic preidentified regions of interest. SPIE, 1999, 3644 DOI:10.1117/12.348474

60. Suh B, Ling H, Bederson B B, Jacobs D W. Automatic thumbnail cropping and its effectiveness. In: Proceedings of the 16th annual ACM symposium on User interface software and technology. Vancouver, Canada, ACM, 2003: 95–104 DOI:10.1145/964696.964707

61. DeCarlo D, Santella A. Stylization and abstraction of photographs. ACM Transactions on Graphics, 2002, 21(3): 769–776 DOI:10.1145/566654.566650

62. Santella A, DeCarlo D. Visual interest and NPR: an evaluation and manifesto. In: Proceedings of the 3rd international symposium on Non-photorealistic animation and rendering. ACM, 2004: 71–150 DOI:10.1145/987657.987669

63. Yamauchi H, Saleem W, Yoshizawa S, Karni Z, Belyaev A, Seidel H P. Towards stable and salient multi-view representation of 3D shapes. IEEE International Conference on Shape Modeling and Applications. Matsushima, Japan, 2006, 40 DOI:10.1109/SMI.2006.42

64. Guy G, Medioni G. Inferring global pereeptual contours from local features. International Journal of Computer Vision, 1996, 20(1/2): 113–133 DOI:10.1007/bf00144119

65. Sawhney R, Li F, Christensen H I, Isbell C L. Purely geometric scene association and retrieval–A case for macro-scale 3D geometry. arXiv. org, 2018

66. Frintrop S, Nüchter A, Surmann H. Visual Attention for Object Recognition in Spatial 3D Data. In: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, 168–182 DOI:10.1007/978-3-540-30572-9_13

67. Kim Y, Varshney A. Saliency-guided enhancement for volume visualization. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 925–932 DOI:10.1109/tvcg.2006.174

68. Hisada M, Belyaev A G, Kunii T L. A skeleton-based approach for detection of perceptually salient features on polygonal surfaces. Computer Graphics Forum, 2002, 21(4): 689–700 DOI:10.1111/1467-8659.00627

69. Heckbert P S, Garland M. Optimal triangulation and quadric-based surface simplification. Computational Geometry, 1999, 14(1–3): 49–65 DOI:10.1016/s0925-7721(99)00030-9

70. Gȩbal K, Baerentzen J A, Aanaes H, Larsen R. Shape analysis using the auto diffusion function. Computer Graphics Forum, 2009, 28(5): 1405–1413 DOI:10.1111/j.1467-8659.2009.01517.x

71. Medimegh N, Belaid S, Atri M, Werghi N. 3D mesh watermarking using salient points. Multimedia Tools and Applications, 2018, 77(24): 32287–32309 DOI:10.1007/s11042-018-6252-6

72. Jeong S, Sim J. Saliency Detection for 3D Surface Geometry Using Semi-regular Meshes. IEEE Transactions on Multimedia, 2017, 19(12): 2692–2705 DOI:10.1109/TMM.2017.2710802

73. Costa L D F. Visual saliency and attention as random walks on complex networks. arXiv preprint physics/0603025, 2006

74. Norris J R. Markov Chains. Cambridge: Cambridge University Press, 1997 DOI:10.1017/cbo9780511810633

75. Lau M, Dev K, Shi W, Dorsey J, Rushmeier H. Tactile mesh saliency. ACM Trans Graph, 2016, 35(4): 1–11 DOI:10.1145/2897824.2925927

76. Gingold Y, Shamir A, Cohen-Or D. Micro perceptual human computation for visual tasks. ACM Transactions on Graphics, 2012, 31(5): 1–12 DOI:10.1145/2231816.2231817

77. Wang X, Lindlbauer D, Lessig C, Maertens M, Alexa M. Measuring the visual salience of 3D printed objects. IEEE Computer Graphics and Applications, 2016, 36(4): 46–55 DOI:10.1109/mcg.2016.47

78. Takahashi S, Fujishiro I, Takeshima Y, Nishita T. A feature-driven approach to locating optimal viewpoints for volume visualization. Proc IEEE Visualization, 2005, 495–502 DOI:10.1109/VIS.2005.4

79. Mortara M, Spagnuolo M. Semantics-driven best view of 3D shapes. Computers Graphics, 2009, 33(3): 280–290 DOI:10.1016/j.cag.2009.03.003

80. Simms D J, Milnor J. Morse Theory, Annals of Mathematics Studies 51. In: Proceedings of the Edinburgh Mathematical Society, 1964, 14(1): 84

81. Mortara M, Patané G, Spagnuolo M, Falcidieno B, Rossignac J. Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica, 2004, 38(1): 227–248 DOI:10.1007/s00453-003-1051-4

82. Hoppe H. Progressive meshes. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. New Orleans, Louisiana, ACM, 1996, 99–108

83. Cohen J, Olano M, Manocha D. Appearance-preserving simplification. In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM, 1998: 115–122 DOI:10.1145/280814.280832

84. Karni Z, Gotsman C. Spectral compression of mesh geometry. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques. New York, NY, USA, ACM, 2000: 279–286 DOI:10.1145/344779.344924

85. Lindstrom P, Turk G. Image-driven simplification. ACM Transactions on Graphics, 2000, 19(3): 204–241 DOI:10.1145/353981.353995

86. Luebke D, Hallen B. Perceptually Driven Simplification for Interactive Rendering. In: Eurographics. Vienna: Springer Vienna, 2001: 223–234 DOI:10.1007/978-3-7091-6242-2_21

87. Zhang E, Turk G. Visibility-guided simplification. In: IEEE Visualization. Boston, MA, USA, IEEE, 2002: 267–274 DOI:10.1109/VISUAL.2002.1183784

88. Erdem U M, Sclaroff S. Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements. Computer Vision and Image Understanding, 2006, 103(3): 156–169 DOI:10.1016/j.cviu.2006.06.005

89. Yabuta K, Kitazawa H. Optimum camera placement considering camera specification for security monitoring. In: 2008 IEEE International Symposium on Circuits and Systems. Seattle, WA, USA, IEEE, 2008, 2114–2117 DOI:10.1109/ISCAS.2008.4541867

90. Alam M S, Goodwin S D. Control of Constraint Weights for a 2D Autonomous Camera. In: Advances in Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 121–132 DOI:10.1007/978-3-642-01818-3_14

91. Becker S C, Bove V M. Semiautomatic 3D-model extraction from uncalibrated 2D-camera SPIE, 1995, 2410 DOI:10.1117/12.205979

92. Yao Y, Chen C H, Koschan A, Abidi M. Adaptive online camera coordination for multi-camera multi-target surveillance. Computer Vision and Image Understanding, 2010, 114(4): 463–474 DOI:10.1016/j.cviu.2010.01.003

93. Amriki K A, Atrey P K. Bus surveillance: how many and where cameras should be placed. Multimedia Tools and Applications, 2014, 71(3): 1051–1085 DOI:10.1007/s11042-012-1247-1

94. Kahng J H, Yoon S H. System for Providing Multiple Virtual Reality Views. US Patent: WO2018KR03334, 2017-06-27

95. Piemonte Patrick S, Pahwa A, Moore C D, Howard J A. Virtual camera for 3D maps. EPO Patent: AU20180264015, 2018-11-13

96. Vandrotti B, Veldandi M, Lehtiniemi A, Vaquero D A. Auto Scene Adjustments For Multi Camera Virtual Reality Streaming. US Patent: US201715602356, 2017-05-23

97. Molina H, Anthony M, Srinivasan V, Perez C G, Handa A, Marshall C B. Container-Based Virtual Camera Rotation. US Patent: US201715636359, 2017-06-28

98. Jeon J W. Method And System For Controlling Virtual Camera In Three-Dimensional Virtual Space, and Computer-Readable Recording Medium. Japan Patent: JP20180103400, 2018-05-30

99. Barral P, Dorme G, Plemenos D. Visual understanding of a scene by automatic movement of a camera. In: International conference 3IA. Moscow, Russia: 1999, 3–4

100. Barral P, Dorme G, Plemenos D. Intelligent scene exploration with a camera. In: International Conference 3IA. Limoges, France: 2000

101. Barral P, Dorme G, Plemenos D. Scene understanding techniques using a virtual camera. In: Eurographics. Interlaken, Switzerland, 2000

102. Dorme G. Study and implementation of 3D scene understanding techniques. France: University of Limoges, 2001.

103. Jaubert B, Tamin K, Plemeno D. Techniques for off-line scene exploration using a virtual camera. In: International Conference 3IA. Limoges, France, 2006

104. Lu M H, Newcomb S E, Maissey B R, De Andrad A J L. Manipulating Virtual Camera Dolly in Multi-Dimensional Space to Produce Visual Effect. US Patent: US201815927823, 2018-03-21

105. Marchand E, Courty N. Image-based virtual camera motion strategies. In: Fels S, Poulin P, eds. Graphics Interface Conference, Morgan Kaufmann, Montreal, Quebec, 2000, 69–76

106. Guzman-Rivera A, Kohli P, Glocker B, Shotton J, Sharp T, Fitzgibbon A, Izadi S. Multi-output learning for camera relocalization. 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, IEEE, 2014: 1114–1121 DOI:10.1109/CVPR.2014.146

107. Cretu A M, Chagnon-Forget M, Payeur P. Selectively densified 3D object modeling based on regions of interest detection using neural gas networks. Soft Computing, 2017, 21(18): 5443–5455 DOI:10.1007/s00500-016-2132-z

108. Martinetz T M, Berkovich S G, Schulten K J. "Neural-gas" network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, 1993, 4(4): 558–569 DOI:10.1109/72.238311

109. Monette-Thériault H, Cretu A M, Payeur P. 3D object modeling with neural gas based selective densification of surface meshes. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). San Diego, CA, USA, IEEE, 2014: 1354–1359 DOI:10.1109/SMC.2014.6974103

110. Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84–90 DOI:10.1145/3065386

111. Peng X, Sun B, Karim A, Kate S. Exploring invariances in deep convolutional neural networks using synthetic images. Eprint Arxiv, 2014, 1278–1286

112. Su H, Sun M, Li F F, Savarese S. Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In: IEEE 12th International Conference on Computer Vision. Kyoto, Japan, IEEE, 2009, 213–220 DOI:10.1109/ICCV.2009.5459168

113. Stark M, Goesele M, Schiele B. Back to the future: learning shape models from 3D cad data. In: BMVC. 2010, 2: 5

114. Payet N, Todorovic S. From contours to 3D object detection and pose estimation. In: International Conference on Computer Vision. Barcelona, Spain, 2011, 983–990 DOI:10.1109/ICCV.2011.6126342

115. Fidler S, Dickinson S, Urtasun R. 3d object detection and viewpoint estimation with a deformable 3d cuboid model. In: Advances in Neural Information Processing Systems. 2012, 611–619

116. Cabral B K, Hsu J, Coward A H. Panoramic virtual reality camera assembly. US Patent: US201629569877F,2016-06-30

117. Cabral B K, Briggs F S, Hsu J, Pozo A P, Coward A. Three- Dimensional, 360-Degree Virtual Reality Camera System. US Patent: CA20173019786, 2017-01-31

118. Mottaghi R, Xiang Y, Savarese S. A coarse-to-fine model for 3D pose estimation and sub-category recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, IEEE, 2015, 418–426 DOI:10.1109/CVPR.2015.7298639

119. Su H, Qi C R, Li Y Y, Guibas L J. Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views. In: IEEE International Conference on Computer Vision. Santiago, Chile, IEEE, 2015, 2686–2694 DOI:10.1109/ICCV.2015.308

120. Wang Y M, Li S Y, Jia M Y, Liang W. Viewpoint estimation for objects with convolutional neural network trained on synthetic images. In: Lecture Notes in Computer Science. Cham, Springer International Publishing, 2016, 169–179 DOI:10.1007/978-3-319-48896-7_17

121. Lowry S, Sunderhauf N, Newman P, Leonard J J, Cox D, Corke P, Milford M J. Visual place recognition: A survey. IEEE Transactions on Robotics, 2016, 32(1): 1–19 DOI:10.1109/tro.2015.2496823

122. Papon J, Abramov A, Schoeler M, Wörgötter F. Voxel cloud connectivity segmentation–supervoxels for point clouds. In: IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA, IEEE, 2013, 2027–2034 DOI:10.1109/CVPR.2013.264

123. Mur-Artal R, Montiel J M M, Tardos J D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 2015, 31(5): 1147–1163 DOI:10.1109/tro.2015.2463671

124. Li S D, Calway A. RGBD relocalisation using pairwise geometry and concise key point sets. In: IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA, IEEE, 2015, 6374–6379 DOI:10.1109/ICRA.2015.7140094

125. Satkin S, Hebert M. 3DNN: viewpoint invariant 3D geometry matching for scene understanding. In: IEEE International Conference on Computer Vision. Sydney, NSW, Australia, IEEE, 2013, 1873–1880 DOI:10.1109/ICCV.2013.235

126. Valentin J, Nießner M, Shotton J, Fitzgibbon A, Izadi S, Torr P. Exploiting uncertainty in regression forests for accurate camera relocalization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, IEEE, 2015, 4400–4408 DOI:10.1109/CVPR.2015.7299069

127. Walch F, Hazirbas C, Leal-Taixé L, Sattler T, Hilsenbeck S, Cremers D. Image-based localization using LSTMs for structured feature correlation. In: IEEE International Conference on Computer Vision (ICCV). Venice, Italy, IEEE, 2017: 627–637 DOI:10.1109/ICCV.2017.75

128. Yano T, Handa M, Aizawa M, Mizuno S, Tanaka K, Matsushita A, Morisawa K, Komiyama M, Fujii K, Date A. Method and apparatus for generating a virtual image from a viewpoint selected by the user, from a camera array with transmission of foreground and background images at different frame rates. US Patent: AU20170270402, 2016-05-25

129. Handa M, Aizawa M, Mizuno S, Tanaka K, Matsushita A, Morisawa K, Yano T, Komiyama M, Fujii K, Date A. Method and apparatus for generating a virtual image from a viewpoint selected by the user, from a camera array with daisy chain connection. EPO Patent: AU20170270403, 2016-05-25

130. Tanaka K, Handa M, Aizawa M, Mizuno S, Matsushita A, Morisawa K, Yano T, Komiyama M, Fujii K, Date A. Method and apparatus for generating a virtual image from a viewpoint selected by the user, from a camera array with default parameters associated to the selected type of sport event. EPO Patent: AU20170270400, 2017-05-22

131. Kim Y G. Apparatus and method for generating image at any point-view based on virtual camera. Korea Patent: KR20170074440, 2017-06-13

132. Park J, Jang J. 3 A method and apparatus for setting virtual camera based on branching region and structures for exploring 3D treelike objects. Korea. KR20170095242[P]. 2017-07-27.

133. Sawhney R, Li F, Christensen H I, Isbell C L. Purely geometric scene association and retrieval–A case for macro-scale 3D geometry. arXiv. org, 2018

email E-mail this page

Articles by authors

VRIH

BAIDU SCHOLAR

WANFANG DATA