Adaptive smoothing length method based on weighted average of neighboring particle density for SPH fluid simulation
1. School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
2. Qingdao Research Institute of Beihang University, Qingdao 266000, China
Abstract
Keywords： Fluid simulation ; SPH ; Smoothing length ; Adaptive ; Particle density
Content
Algorithm 1: ASLSPH method |
---|
1: while simulation do 2: for each particle i do 3: calculate the smoothing length of i (Section 3.1) 4: end for 5: adaptive smoothing length neighbor search (Section 3.2) 6: for each particle i do 7: calculate the density of particle i (symmetric interpolation, Section 3.3) 8: end for 9: for each particle i do 10: calculation the pressure force, viscous force and external force of particle i (symmetric interpolation, Section 3.3) 11: end for 12: for each particle i do 13: update the velocity of particle i 14: update the position of particle i 15: end for 16: end while |
Model | Num | △t [s] | T_{sim} [s] | T_{ns} [s] | Speed-up |
---|---|---|---|---|---|
WCSPH | 9360 | 0.00004 | 1679.84 | 486.31 | - |
PCISPH | 0.00130 | 106.86 | 29.69 | 15.72 | |
IISPH | 0.00150 | 82.55 | 23.27 | 20.35 | |
DFSPH | 0.00150 | 41.10 | 11.64 | 40.87 | |
ASLSPH | 0.00150 | 34.54 | 11.50 | 48.63 | |
WCSPH | 89216 | 0.00002 | 28594.19 | 8658.68 | - |
PCISPH | 0.00065 | 1690.96 | 533.61 | 16.91 | |
IISPH | 0.00100 | 1233.57 | 370.13 | 23.18 | |
DFSPH | 0.00150 | 704.64 | 209.74 | 40.58 | |
ASLSPH | 0.00150 | 635.99 | 231.87 | 44.96 |
Reference
Müller M, Solenthaler B, Keiser R, Gross M. Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation-SCA'05. Los Angeles, California, New York, ACM Press, 2005 DOI:10.1145/1073368.1073402
Ihmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M. SPH fluids in computer graphics. Eurographics, 2014(2): 21–42 DOI:10.2312/egst.20141034
Koschier D, Bender J, Solenthaler B. Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids. Eurographics, 2019 DOI:10.2312/egt.20191035
Adams B, Pauly M, Keiser R, Guibas L J. Adaptively sampled particle fluids. ACM Transactions on Graphics, 2007, 26(3): 48 DOI:10.1145/1276377.1276437
Chaniotis A K, Poulikakos D, Koumoutsakos P. Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. Journal of Computational Physics, 2002, 182(1): 67–90 DOI:10.1006/jcph.2002.7152
Lapenta G, Brackbill J U. Control of the number of particles in fluid and MHD particle in cell methods. Computer Physics Communications, 1995, 87(1/2): 139–154 DOI:10.1016/0010-4655(94)00180-a
Miller G, Pearce A. Globular dynamics: a connected particle system for animating viscous fluids. Computers & Graphics, 1989, 13(3): 305–309 DOI:10.1016/0097-8493(89)90078-2
Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389 DOI:10.1093/mnras/181.3.375
Shao S D, Lo E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 2003, 26(7): 787–800 DOI:10.1016/s0309-1708(03)00030-7
Ren B, Fan H F, Bergel G L, Regueiro R A, Lai X, Li S F. A peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves. Computational Mechanics, 2015, 55(2): 287–302 DOI:10.1007/s00466-014-1101-6
Gong K, Shao S D, Liu H, Lin P Z, Gui Q Q. Cylindrical SPH simulations of water entry. Journal of Fluids Engineering, 2018, 141(7): 071303 DOI:10.1115/1.4042369
Kazemi E, Koll K, Tait S, Shao S D. SPH modelling of turbulent open channel flow over and within natural gravel beds with rough interfacial boundaries. Advances in Water Resources, 2020, 140: 103557 DOI:10.1016/j.advwatres.2020.103557
Becker M, Teschner M. Weakly compressible SPH for free surface flows. In: Proceedings of the Acm Siggraph/eurographics Symposium on Computer Animation. New York, Acm Press, 2007 DOI: 10.2312/SCA/SCA07/209-218
Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Transactions on Graphics, 2009, 28(3): 1–6 DOI:10.1145/1531326.1531346
Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(3): 426–435 DOI:10.1109/tvcg.2013.105
Angeles Los, California, York New, Press ACM, 2015, 147–155 DOI:10.1145/2786784.2786796
Bender J, Koschier D. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(3): 1193–1206 DOI:10.1109/tvcg.2016.2578335
Lastiwka M, Quinlan N, Basa M H. Adaptive particle distribution for smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 2005, 47(10/11): 1403–1409 DOI:10.1002/fld.891
Keiser R, Adams B, Dutré P. Multiresolution particle-based fluids. Swiss Federal Institute of Technology Zurich, Department of Computer Science, 2006 DOI:10.3929/ethz-a-006780981
Angeles Los, California, USA, IEEE, 2008 DOI:10.2312/VG/VG-PBG08/137-146
Orthmann J, Kolb A. Temporal blending for adaptive SPH. Computer Graphics Forum, 2012, 31(8): 2436–2449 DOI:10.1111/j.1467-8659.2012.03186.x
Desbrun M, Gascuel M P. Smoothed particles: a new paradigm for animating highly deformable bodies. Computer Animation and Simulation '96, 1996 DOI:10.1007/978-3-7091-7486-9_5
Ihmsen M, Akinci N, Gissler M. Boundary handling and adaptive time-stepping for PCISPH. The Eurographics Association, 2010 DOI:10.2312/PE/vriphys/vriphys10/079-088
Goswami P, Pajarola R. Time adaptive approximate SPH. In: Proceedings of the 8th Workshop on Virtual Reality Interactions and Physical Simulations, 2011 DOI: 10.2312/PE/vriphys/vriphys11/019-028
Gingold R A, Monaghan J J. Kernel estimates as a basis for general particle methods in hydrodynamics. Journal of Computational Physics, 1982, 46(3): 429–453 DOI:10.1016/0021-9991(82)90025-0
Nelson R P, Papaloizou J C B. Variable smoothing lengths and energy conservation in smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 1994, 270(1): 1–20 DOI:10.1093/mnras/270.1.1
Di L, Sigalotti G, Daza J, Donoso A. Modelling free surface flows with smoothed particle hydrodynamics. Condensed Matter Physics, 2006, 9(2): 359 DOI:10.5488/cmp.9.2.359
Olejnik M, Szewc K, Pozorski J. SPH with dynamical smoothing length adjustment based on the local flow kinematics. Journal of Computational Physics, 2017, 348: 23–44 DOI:10.1016/j.jcp.2017.07.023
Ren H L, Zhuang X Y, Rabczuk T. A dual-support smoothed particle hydrodynamics for weakly compressible fluid inspired by the dual-horizon peridynamics. Computer Modeling in Engineering & Sciences, 2019, 121(2): 353–383 DOI:10.32604/cmes.2019.05146
Harada T, Koshizuka S, Kawaguchi Y. Smoothed particle hydrodynamics on GPUs. Computer Graphics International, 2007, 40: 63–70 DOI:10.1142/S0219876207000972
Ihmsen M, Akinci N, Becker M, Teschner M. A parallel SPH implementation on multi-core CPUs. Computer Graphics Forum, 2011, 30(1): 99–112 DOI:10.1111/j.1467-8659.2010.01832.x
Sin F, Bargteil A W, Hodgins J K. A point-based method for animating incompressible flow. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation-SCA '09. New Orleans, Louisiana, New York, ACM Press, 2009, 247–255 DOI:10.1145/1599470.1599502
Hernquist L, Katz N. TREESPH-A unification of SPH with the hierarchical tree method. The Astrophysical Journal Letters Supplement Series, 1989, 70: 419 DOI:10.1086/191344
Gong X, Yang J, Zhang S. A parallel SPH method with background grid of adaptive mesh refinement. Chinese Journal of Computational Physics, 2016, 33(2):183-189 DOI:10.3969/j.issn.1001-246X.2016.02.008
Goswami P, Schlegel P, Solenthaler B, Pajarola R. Interactive SPH simulation and rendering on the GPU. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2010, 55–64 DOI:10.2312/SCA/SCA10/055-064
Macklin M, Müller M. Position based fluids. ACM Transactions on Graphics, 2013, 32(4): 1–12 DOI:10.1145/2461912.2461984
Hochstetter H, Kolb A. Evaporation and condensation of SPH-based fluids. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Los Angeles, California, New York, NY, USA, ACM, 2017 DOI:10.1145/3099564.3099580
Park S H, Jo Y B, Ahn Y, Choi H Y, Choi T S, Park S S, Yoo H S, Kim J W, Kim E S. Development of multi-GPU–based smoothed particle hydrodynamics code for nuclear thermal hydraulics and safety: potential and challenges. Frontiers in Energy Research, 2020, 8: 86 DOI:10.3389/fenrg.2020.00086
Morikawa D, Senadheera H, Asai M. Explicit incompressible smoothed particle hydrodynamics in a multi-GPU environment for large-scale simulations. Computational Particle Mechanics, 2020, 1–18 DOI:10.1007/s40571-020-00347-0